

KOdeCO net zero

CCS KNOWLEDGE SHARING WORKSHOP BY THE INNOVATION FUND

Aalborg, Denmark, 28th of November 2023

DECARBONIZING KOROMAČNO CEMENT PLANT ENABLING ISTRIA TO ALIGN INDUSTRY WITH TOURISM

"KOdeCO net zero" PROJECT DESCRIPTION FIRST-OF-ITS-KIND, END-TO-END CCS VALUE CHAIN

Location: Koromačno, Croatia

- Actual / projected captured CO2: 367,000 t CO2/year
- **Technology:** CO₂ capture adsorption technology
- CO₂ Usage/storage model: Offshore sink
- Estimated CAPEX (rough estimate): 237 mil. EUR

SYNERGY WITH EXPERIENCED STRONG PARTNERS RESULT IS INNOVATIVE AND SCALABLE PROJECT WITH HIGH MATURITY

JUST TRANSITION TERRITORY WE ARE PROUD TO SUPPORT OUR COMMUNITY IN THE TRANSITION

Istria and **Sisačko-Moslovačka** counties are only territories in Croatia identified by Just Transition Fund (JTF) and included in Croatian Integrated Territorial Program

NORTH EUROPE CREATED OPPORTUNITIES WE CARE ENABLING SOLUTIONS FOR INDUSTRY IN SOUTH EUROPE

TRANSPORTATION AND STORAGE NORTH - EU COUNTRIES

Source: CO2Europipe; WP2.2 Report – Development of a large-scale CO2 transport infrastructure in Europe:matching captred volumes ans storage availability

TRANSPORTATION AND STORAGE - KOdeCO net zero

Project IFESTOS

Scaling Carbon Capture & Storage in Greece

Value chain

Overview

Expected entry into operation: 2029

Regulatory challenges

- Provide open & non-discriminatory access to logistics & storage infrastructure
- ✓ Ensure unbundled, cost-based, transparent tariffs
- ✓ Establish Carbon Contracts for Difference
- ✓ Determine licensing & certification framework
- ✓ Define technical / safety standards
- ✓ Enable cross-border transportation

Thank you

iFEST

IRIS Innovative low carbon hydrogen and methanol production by large scale carbon capture

CCS Knowledge Sharing workshop by the Innovation Fund – Realising opportunities along the value chain 27-28 November 2023

IRIS | Innovation Fund

IRIS project **comprises a novel, heavily integrated point-source CCUS technology solution**, applied on its current hydrogen production process and its coupling to a small-scale methanol production unit, which will utilize part of the captured CO₂ as feedstock. MOH's innovative project IRIS, seeks to couple **the production of ultra-low carbon hydrogen and methanol by integrating point-source carbon capture**, applied on its current Steam Methane Reforming unit, electrolytic H₂ production and a catalytic process of high selectivity.

Coordinator: Motor Oil (Hellas) Corinth Refineries S.A.

Location: Agioi Theodoroi, Corinth, Greece

Sector: Refineries

Amount of IF grant: €126.790.000

Duration: 168 months

Volume of CO₂ captured for storage by 2030 (Mtpa): 1.2Mt

Starting date – Ending date: January 2024 – June 2037

Planned date of entry into operation: July 2028

MOH Refinery, Agioi Theodoroi, Corinth, Greece

IRIS | Key project aspects

IRIS constitutes a significant step:

- (a) in the decarbonization plan of MOH carbon capture project implemented in the Steam Methane Reforming Unit of the refinery with post-combustion capture technology scheme which allows maximization of the CO₂ captured
- > decreases the total carbon footprint of the refinery by 25% (~495,000 t/y of CO₂ captured)
- > achieves very high energy integration with the existing refinery operations, further reducing its total energy requirements
- > will lay the foundation for the future expansion of the CO2 capture technology to two more refinery units, that could further decrease the total refinery carbon footprint by 50%

- (b) for the production of low CO₂ energy carriers for mobility purposes and other industrial usage
- > 55,280 t/y of blue hydrogen produced ~37% lower than the EU Taxonomy threshold
- 10.000 t/y e- methanol as part of the captured CO₂ will be combined with green hydrogen produced by a 30MW electrolyzer (EPHYRA), materializing the principles of circular economy

(c) to lever the development of the very few CO₂ storage facilities in the Mediterranean Sea

(d) for the creation of a wider ecosystem of projects that promote the development of hydrogen market, namely the EU-backed projects EPHYRA* and TRIERES*

* EPHYRA and TRIERES projects are supported by the Clean Hydrogen Partnership and its members Hydrogen Europe and Hydrogen Europe Research under Grant Agreements No. 101112220 & No. 101112056 respectively

George Daskalakis | Head of New Technologies daskalge@moh.gr Konstantinos Chatzifotis | European Affairs Manager kchatzifotis@moh.gr

Project OLYMPUS

Milaki Cement Plant Decarbonization

HERACLES Group

Milaki Cement Plant

Milaki Cement Plant

Operating in Evia Since 1982

Capacities Clinker : 1,600 kt/a Cement : 1,700 kt/a

2 Owned Quarries

Limestone & Schist 50 Years Reserves

Bagging Facilities

Ground Cement, Solid Fuels and Raw Solid Fuels

2 Alternative Fuel Workshops

for Biomass and SRF

Bulk **Material Yard**

400kt Storage Capacity

HERACLES Group

Milaki Cement Plant

Innovation & Differentiation

Cement & Clinker

Cement exports worldwide

24/7 simultaneous loading & unloading ability

Up to 150 kt dead weight capacity

Oil Well Cement

API certified manufacturer of Well Cement for the Oil & Gas Industry (Class G)

Deliver Oil Well Cement to end customers (Europe, Middle East, Africa, Oceania)

Bagging facilities specifically designed to meet O&G industry needs

Solid Fuels

Trading of tailor-made SF satisfying customer requirements (ability for a variety of processes e.g. grinding, screening, bagging, mixing)

Increased flexibility to manage different fuel types for customers

Aggregates

Sales to greek islands through plant port

OLYMPUS Project

2028 Milaki Cement Plant Carbon Capture & Storage

OLYMPUS Project

Milaki Cement Plant Carbon Capture & Storage

Main benefits

1

Greece enacting a leadership role in climate action, turning the latter to an opportunity for growth and moving the needle on sustainability.

4

Kick-starting the technology race to a **CO₂ circular economy & net zero transition** in the cement sector across Europe with **Greece** being **in the spotlight**.

7

CO₂ avoidance represents 2% of total Greece's CO₂ emissions

2

Establishing Greece as a friendly operating environment for forward- looking enterprises; thus, reinforcing its **investment potential**.

5

Serving as a blueprint for the conversion of cement plants both for Greece and the whole Europe towards a sustainable constructions sector with multiple benefits to the **environment** and the **society**, but also to the **profitability** and **competitiveness** of the Greek and EU cement industry.

3

Not only safeguarding current **job positions** but also **creating new** and more specialized ones, especially in regions where underemployment prevails, such as Central Greece.

6

Contributing to the significant **reduction** of GHG emissions through net carbon removal and paving the way for green growth, not limited to cement sector, but for the rest of CO₂ intensive industry as well.

BECCS at Växjö Energi, Sweden

Julia Ahlrot, Project leader Växjö Energi AB julia.ahlrot@veab.se Daniel Eidenskog, Senior Process Engineer Växjö Energi AB, <u>daniel.eidenskog@veab.se</u>

Växjö Energi, a public owned energy company

Founded **1887**

Employees 222

Owner

Power Grid Number of customers

37 700 Total grid 152.000 km **Broadband** Number of customers

43 000 Total grid 435.000 km Combined Heat&Power
Number of customers

10 100 Total grid 46.000 km

Sweden Norrkoph Sweden Norrkoph

EXISTING COMBINED HEAT AND POWER AT THE SANDVIK PLANT

VEXJÖ ENERGI

100 % Fossil fuel free! Biomass from forest residues

EN DEL AV DIN VARDAG

BECCS value chain

OSCLIMO

CLUSTER COOPERATION IN SOUTHERN SWEDEN FOR CARBON LOGISTICS

Subsidied by

Finansieras av Europeiska unionen NextGenerationEU

CNetSS

CARBON NETWORK SOUTH SWEDEN

Subsidied by

PILOT PROJECT FOR CARBON CAPTURE IN COOPERATION WITH LUND UNIVERSITY

Finansieras av Europeiska unionen NextGenerationEU

Amine technology AMP/DMSO

EN DEL AV DIN VARDAG

Thank you!

Julia Ahlrot, Project leader Växjö Energi AB julia.ahlrot@veab.se Daniel Eidenskog, Senior Process Engineer Växjö Energi AB, <u>daniel.eidenskog@veab.se</u>

PROJECT BACKGROUND

PROJECT BACKGROUND

Cement plant NEXE in Našice accounts for 1/3 of cement production in Croatia - more than 1 million t of cement per year, out of which more than 50% of production is exported to the countries of the region.

inexe

PROJECT BACKGROUND

Cement production represents energy-intensive process with large amount of CO2 emission as by-product. More than 70% of CO2 emissions is a result of chemical process of decomposition of carbonate raw material at >1400°C and Carbon Capture technology represents the only long-term solution for reduction of CO2 emissions.

The production of 1 million tons of cement requires >900 GWh of energy

Project: CO2NTESSAIndustry: CementLocation: Našice/Slavonia/CroatiaInvestment: EUR 391.7 milEntry into operation: 2029Category: Carbon Capture and Storage (CCS)Technology: Thyssenkrupp Polysius® pureoxyfuel Carbon Capture

March 2023: Applied on InnovFund-2022-LSC-01-GENERAL

July 2023: The European Commission (CINEA) proposed to the European Investment Bank (EIB) that, for the CO2NTESSA project, the allocation of EIB technical assistance (EIB PDA) should be considered.

October 2023: The CO₂NTESSA project is included in the list of strategic investment projects of the Republic of Croatia.

The cement industry is very energy intensive and one of the most significant emitters of CO_2 , responsible for around 4% of all emissions at the EU level. The need to decarbonise cement industry is urgent to prevent the risk of locking in CO_2 emissions beyond 2050, when the EU plans to achieve full carbon neutrality.

The $CO_2NTESSA$ project will lead to implementation of an innovative carbon capture technology at NEXE cement plant in Našice, Croatia. Existing plant will be modified based on the Polysius PureOxyfuel technology developed by thyssenkrupp. Based on this, the $CO_2NTESSA$ project will allow capture 739 000 t CO_2 /year, making cement production at NEXE close to zero emissions. Moreover, the $CO_2NTESSA$ project will unlock the potential for NEXE to become the first negative emitter of CO_2 in the EU because of use of alternative fuels.

Geologically highly appropriate, onshore storage location Bockovci is located only 38 km away, allowing energy and cost-efficient injection of the captured CO_2 into the saline aquifer. The CO_2 NTESSA project will achieve synergy with the GT CCS project which includes renewal of the existing out-of-function pipeline for transport of captured CO_2 from the NEXE cement plant. The GT CCS project is expected to be included into the EU's list of Projects of Common Interest (PCI), with potential to become a regional hub for CO_2 , making the CO_2 NTESSA project an important milestone of carbon capture and storage development in Croatia and beyond.

Carbon capture technologies in cement production require massive investments, making high costs the main barrier to wide roll out of carbon capture solutions, so public funding is crucial in reaching energy and climate objectives within the cement industry. **Total investment cost in the CO₂NTESSA project** will be EUR 391.7 million, making it one of the largest planned investments in industry in Croatia. Project CO₂NTESSA enables capturing of CO₂ in more cost-effective way in comparison with similar Carbon Capture projects, securing the long-term competitiveness of cement products abroad.

INNOVATIVENESS OF THE PROJECT

INNOVATIVENESS OF THE PROJECT

CCNTESSA

A unique, fully rounded, cost-effective CCS project in Southeast Europe. One of few in the EU that has efficient solution for disposal of captured CO₂ by transport pipeline up to location Bockovci-1, where CO₂ will be injected into the deposit-saline aquifer (connection to the project Croatia GT CCS).

1.	CO2NTESSA PROJECT	NEXE	CO ₂ CAPTURE
2.	GT CCS CROATIA	PLINACRO	TRANSPORT OF CO2
3.	GT CCS CROATIA	CROATIAN HYDROCARBON AGENCY	STORAGE OF CO2

INNOVATIVENESS OF THE PROJECT

Carbon Capture industrial large-scale project which do not need additional energy-intensive CO_2 purification for further transport and injection/storage of CO_2 , as CO_2 purity of app 90% is enough.

Unique completely rounded CCS project in south-east Europe, that includes CO_2 capture, transport of CO_2 by pipeline and injection of CO_2 in saline aquifer Bockovci-1 (on-shore storage) which is only 38 km far from cement plant.

SAVE

Cost efficiency through significant less CAPEX and OPEX (per tonne of CO₂ avoided) in comparison with similar projects.

NEXE cement plant in Našice becomes a negative CO_2 emitter with capture of >700.000t CO_2 per year (100% CO_2 emissions from production process) and use of alternative fuels (enables continued substitution of alternative fuels with a substitution coefficient >90%).

Implementation of carbon-neutral and cost-efficient production as guideline for other plants in industry that have low quality raw materials and low level of CO_2 concentration in exhaust gases from production processes (cement plants, power plants, refineries...) as an example of green transition for long-term sustainable operations.

PROJECT IMPLEMENTATION

PROJECT IMPLEMENTATION

INFORMATION ON PROJECT APPLICATION TO THE INNOVATION FUND

More information available on: www.nexe.hr/en/co2ntessa/

