REVIEWING THE CONTRIBUTION OF THE LAND USE, LAND USE CHANGE AND FORESTRY SECTOR TO THE GREEN DEAL

WORKSHOP III REPORT: GATHERING IDEAS ON THE NEXT STEPS FOR CARBON FARMING PROJECT DELIVERABLE - TASK 2
REVIEWING THE CONTRIBUTION OF THE LAND USE, LAND USE CHANGE AND FORESTRY SECTOR TO THE GREEN DEAL

WORKSHOP III REPORT: GATHERING IDEAS ON THE NEXT STEPS FOR CARBON FARMING PROJECT DELIVERABLE - TASK 2
CONTENTS

MAY 2021 1

1 Overview 7

2 Workshop objectives 7

3 Introduction 7

4 Participants 7

5 Welcome and setting the scene 8

6 Main takewaways of breakout rooms 9
 6.1 BR1: Linkages between biodiversity and carbon removals 9
 6.2 BR2: Monitoring carbon removals 11
 6.3 BR3: Policy framework 12

7 Closing remarks 13
1 Overview

The following report contains a summary of the third workshop that was held as part of a four workshop series under the study "Reviewing the contribution of the LULUCF sector to the Green Deal" commissioned by DG CLIMA to experts from COWI, Technopolis Group and Exergia. The workshop entitled "Gathering ideas on the next steps for carbon farming" was held on the 21st of April 2021.

The workshop was structured as a targeted event with breakout rooms. The relevant stakeholders were selected to participate based on an expression of interest process.

2 Workshop objectives

The objective of the workshop was to extract key information on the next steps for carbon farming on the following main topics: linkages between biodiversity and carbon removals, monitoring carbon removals and the policy framework.

3 Introduction

The workshop began with an introduction from the moderator, Tomasz Kowalczewski (COWI). He welcomed the participants and introduced some guidelines for the workshop. He presented the agenda for the day as presented in Figure 1.

Figure 1 - Agenda of the workshop

| Agenda |
|-----------------|-----------------|
| 10:00 – 10:05 | Welcome & housekeeping rules |
| | Tomasz Kowalczewski, COWI |
| 10:05 – 10:15 | Policy context and objectives of the event |
| | Christian Holzleitner, DG CLIMA, European Commission |
| 10:15 – 10:20 | Explanation of breakout rooms |
| | Tomasz Kowalczewski, COWI |
| 10:20 – 11:45 | Parallel breakout rooms |
| | BR1: Linkages between biodiversity and carbon removals |
| | BR2: Monitoring carbon removals |
| | BR3: Policy context |
| 11:45 – 12:05 | Break |
| 12:05 – 12:50 | Main takeaways |
| | BR1: Tomasz Kowalczewski, COWI |
| | BR2: Peter Sølling Jørgensen, COWI |
| | BR3: Karolina Sara Kenney, COWI |
| 12:50 – 13:00 | Closing remarks |
| | Valeria Forlin, DG CLIMA |

4 Participants

Overall, 113 stakeholders expressed interest in the event and 77 were selected to participate, representing different stakeholder categories, as presented in the figure below.
5 Welcome and setting the scene

Christian Holzleitner (DG CLIMA) provided an introductory presentation to set the scene for the workshop. He informed the participants about the Climate Law, including the climate-neutrality target for 2050 and the 55% reduction target for 2030.

Mr. Holzleitner described the vision for 2050 with an economy where most fossil fuels will have been phased out and where the remaining emissions will be balanced out by carbon removals. He then provided an overview of the role of the LULUCF sector, of agriculture and of the bioeconomy. The remaining emissions in 2050 will derive primarily from the bioeconomy (e.g. from livestock and the use of fertilisers) and will have to be balanced by carbon removals.

In this context, the LULUCF sector will play a central role towards the objective of climate neutrality as it has the potential to reach net carbon removals of up to 300 million tonnes CO$_2$eq and to reduce non-CO$_2$ emissions from agriculture by 20% by 2030.

He then presented what the European Commission is currently doing in this context. First, he mentioned the review of the LULUCF Regulation - in the framework of the Fit for 55 Package – which has the objective to modernise and simplify the current Regulation and to adapt it to the climate neutrality target for 2050.

Additionally, he referred to two EU initiatives which aim to bring further incentives for land managers, in order to create better business models for more-climate friendly agriculture and forestry. The first initiative is about carbon farming, which promotes a new business model for providing incentives for carbon removals. The second initiative regards a certification mechanism for carbon removals, which focuses on a high-quality market for carbon removals.
A number of policies are in place that have the potential to create better incentives for farmers and foresters, as presented in the figure below.

Figure 3 - Overview of policies

Mr. Holzleitner concluded his presentation by introducing the three main topics of the event, to gather ideas on the next steps for carbon farming:

- Linkages between biodiversity and carbon removals
- Monitoring carbon removals
- Policy framework

Three breakout groups were formed to discuss the abovementioned topics.

6 Main takeaways of breakout rooms

Tomasz Kowalczewski (COWI) introduced the moderators and rapporteurs of the breakout rooms and invited them to present the main takeaways.

6.1 BR1: Linkages between biodiversity and carbon removals

The first breakout room was moderated by **Florian Clayes** (DG CLIMA) and **Tomasz Kowalczewski** (COWI) acted as rapporteur. The breakout group had 18 participants representing environmental NGOs, forest certification organizations, research institutions as well as civil servants.

The discussion was structured around three main questions, namely:

- How to value the biodiversity co-benefits of carbon removals in carbon farming?
- How to ensure that carbon farming activities do not significantly harm biodiversity?
- What tools and data could be mobilized to monitor impacts and co-benefits on biodiversity from carbon farming?
Overall, there was agreement that carbon cannot be the only goal and carbon markets are not the best tools for biodiversity conservation. There is a need for an integrated approach at farm system level or landscape approach. Nature has a long-term perspective, and this should be taken into account.

In addition, farmers should be involved to integrate their practical knowledge into policy. Ensuring policy consistency was considered key to avoid overlapping objectives, including within, e.g. the CAP and within EU nature restoration targets.

How to value the biodiversity co-benefits of carbon removals in carbon farming?

The discussion showed a consensus to jointly act on climate and biodiversity. In addition, the focus for carbon farming should be on ecosystem integrity.

There is a need to incorporate the ecological dimension in the current economic signals (e.g. credit discount related to biodiversity performance).

The relevance of engaging with insurance companies was stressed to reflect the biodiversity potential to reduce risk.

Lastly, participants agreed that there is a need to promote win-win solutions through agroecology, agroforestry, conservation agriculture, organic farming, close-to-nature forestry and wetland rewetting.

How to ensure that carbon farming activities do not significantly harm biodiversity?

In order to ensure that carbon farming activities do not harm biodiversity, there is a need to ban or avoid pervasive practices, such as monoculture, synthetic fertilizers and peatland drainage.

Market signals should not be the only ones to drive biodiversity conservation on land.

There is a need to explore and strengthen the ecological dimension in models of sustainable forest management and sustainable land management.

Lastly, there is a preference for long-term carbon removals rather than short-term, the latter being generally detrimental to biodiversity.

What tools and data could be mobilized to monitor impacts and co-benefits on biodiversity from carbon farming?

The importance of regular auditing was emphasized by participants, alongside the possibility to rely on existing certifications of sustainability.

Monitoring should not only be based on remote sensing, but also on surveys and field data.

There is a need for an integrated system of indicators, rather than focusing on single indicators, such as species counting.

Participants agreed that while there are currently enough technologies and datasets to get started, there is a continuous need for improvement.

Several existing schemes were mentioned which could provide a basis for future developments, such as the low-carbon label (Label bas carbone) in France, the carbon calculator in Finland, and peatland experience in Germany and in the Netherlands.

1 The legislative proposal which is one of the key measures announced in the EU’s 2030 Biodiversity Strategy. It will propose legally binding nature restoration targets, subject to an impact assessment. The publication of this initiative is expected for 4th quarter of 2021.
6.2 BR2: Monitoring carbon removals

Breakout room two was moderated by Nicola Di Virgilio (DG AGRI) and Peter Sølling Jørgensen (COWI) acted as rapporteur.

The discussion was structured around three main questions:

- What are some examples of monitoring schemes and methodologies?
- How can issues linked to costs of monitoring and implementation be addressed?
- What is the right monitoring for the right land-use?

What are some examples of monitoring schemes and methodologies?

Six examples of methodologies were mentioned, including:

- A cyber infrastructure approach in Finland. The infrastructure is part of the Carbon Action Platform, which is developing a measurement and verification system. This system is available for implementation even though there is not sufficient data availability. The Observatory is an open-access online platform for visualizing measurement data from 20 pilot carbon farms and intensive study sites, as well as the results of carbon calculations.²
- The French certification framework, Voluntary Carbon Land Certification project (VOCAL), to monitor GHG emissions introduced a novelty approach to discounts based on uncertainty³
- Indigo’s remote sensing approach for agricultural mineral soils⁴
- The Australian OpenGeoHub using remote sensing (for a 30/30 meter)
- Two tools from Wageningen University: one for grassland monitoring and one for peat soil monitoring⁵
- IFEU fast navigation program, a calculation tool for GHGs at farm level

How can solutions linked to costs of monitoring and implementation be addressed?

Initiatives for bringing down costs were discussed. For instance, it was mentioned that while remote sensing can bring down costs, it is not a silver bullet. Additional initiatives referred to soil sampling in the initial phase and lean administration. In addition, soil spectroscopy was discussed and its potential to create open calibration libraries to share knowledge.

What is the right monitoring for the right land-use?

The discussion revolved around grassland, forests and peatland. For grassland, remote sensing can be very useful, but more research is needed. Regarding forests, the discussion focused on permanence.

For peatlands, permanence is easier to monitor but there are difficulties concerning the fact that volume changes and it requires deep measurements such as LIDAR to catch changes in flux. Groundwater-based measurements could be used to measure peatlands, integrating both soil type and groundwater.

³ https://www.i4ce.org/go_project/project-voluntary-carbon-land-certification-vocal/
⁴ https://www.indigoag.com/atlas-insights
⁵ https://www.wur.nl/en/Research-Results/Research-Institutes/plant-research/show-wpr/Aerial-monitoring-for-more-biodiversity-.htm
The importance of uncertainties was also discussed. It was mentioned that uncertainties also occur due to asymmetry of information. These uncertainties are not necessarily linked with the efficiency of a scheme.

The concept board of the discussion is provided in Appendix B.

6.3 BR3: Policy framework

This breakout room was moderated by Valeria Forlin (DG CLIMA) and Karolina Sara Kenney (COWI) acted as rapporteur.

The concept board was developed in such a way to reach concrete policy solutions from observed issues. The discussion started with problems and barriers to implementing carbon farming approaches. Then, objectives or goals and targets that stem from these problems were discussed. Finally, participants discussed some concrete solutions to these problems and proposed options for a carbon farming policy framework.

The eleven problems that were identified can be grouped under four overarching themes. The **first problem theme** concerned the lack of knowledge among land managers, for example the risk of a high administrative burden in entering a carbon farming scheme. In line with this is the fact that there is a lack of training or advisory services.

With regard to this problem, participants noted that policies must help farmers assess their net carbon balance (both emissions and removals) as well as the specificities of their land areas. Proposed solutions to achieve these goals included a wide-reaching knowledge campaign, making sure that good practices are encouraged through the CAP, for instance through advisory systems (including "training the trainers"). This knowledge campaign could also be fine-tuned to fit different geographical regions and soil conditions, so that farmers receive tailored advice about what works on *their* farm.

The **second problem theme** concerned understanding the impacts, and more precisely ensuring that farmers are made aware of the benefits of carbon farming practices (including financial benefits). In general, the issues of farmer awareness were the most poignant throughout the entire brainstorming session.

Goals with regard to this lack of understanding are to alter misconceptions of the financial benefits and make sure that landowners are aware of both the long-term and short-term benefits. Proposed solutions for farmer awareness are encompassed within the knowledge campaign suggested under the first problem. A specific issue was the profitability for the farmer, given that the costs of participating in carbon farming activities may be higher than the value of carbon credits; public/private interaction was presented as a solution, e.g. the CAP sets minimum quality standards and provides financial support for implementation of certain practices (thus driving down costs for the farmer), while private markets pay for very high-quality carbon credits beyond the CAP (ambitious) baseline. The UK LENS approach was also mentioned as an example of public/private cooperation. In addition, it was proposed for the costs of MRV to be covered by public support and not at the cost of the landowner.

The **third problem theme** concerned the need for high-quality MRV, which also measures co-benefits for productivity and adaptation and ensures good balance between action-based versus result-based payments. Some participants mentioned that the main challenge is not measurement in itself, but rather the establishment of baselines and additionality. MRV does not need to be very expensive, as the example of the project Moor Futures has shown. Generally, however, it
was concluded that there is a lack of harmonised, user-friendly and cost-efficient tools to certify carbon removals.

One of the objectives within this theme is achieving collaboration across institutions such that underlying science is the basis for policy. Proposed solutions included public sector support (e.g. through the CAP) to farmers to invest into and learn how to use high-quality MRV tools, while credits would then be bought by the private sector. In addition, it was proposed that the public sector could provide a common methodology, keeping in mind regional differences. The importance of coordination between private companies was stressed to ensure the purchase of high-quality credits. In terms of timing, it was mentioned that the lack of “perfect” emission / sequestration factors for some practices should not stop the development of carbon farming approaches: policy signals and carbon farming schemes need to be created now, while mitigation impacts and payments can be fine-tuned later, within an ongoing research and calibration process.

The fourth problem theme concerned perverse incentives and legal barriers. It was stressed that a regulatory framework which ensures the authenticity of removals is critical in order to ensure high-quality carbon credits.

Solutions proposed included to halt perverse incentives, e.g. some of the subsidized practices within CAP, and to raise the minimum climate baselines in the CAP. One suggested solution was the application of the polluter-pays-principle. Some participants noted that the agricultural sector remains a source of emissions, so it is important to prioritise the reduction of emissions before looking into carbon removals.

The conceptboard of the discussion is provided in Appendix C.

7 Closing remarks

Valeria Forlin (DG CLIMA) thanked the participants for the active participation and invited them to check the DG CLIMA web-page for updates on carbon farming.

She informed the audience of the next workshop to be held on May 25th, which will focus on carbon farming in the CAP Strategic Plans. In addition, it will present the publication of the final report of a two-year study on how to set up and implement carbon farming in the EU: https://ec.europa.eu/clima/news/commission-sets-carbon-farming-initiative-motion_en
Appendix A Breakout Room 1: Linkages between biodiversity and carbon removals

0. How carbon farming should be framed?

- Carbon market value chains, how to involve farmers to engage in carbon farming, Carbon certification schemes
- A is a bad thing, it is now time to give value to farming from biodiversity perspectives
- Carbon cannot be the central point in biodiversity strategy. Farming is problematic. Markets are not a good tool to influence biodiversity
- Carbon farming should bring nature benefits delivered by the private sector involved in the farming process, Communication to the private sector are needed
- We do not need to duplicate the flexicheck law
- We should not use the farms from the carbon perspective
- Practices should be more ambitious than only no tilling farming. In line with the Paris to farm strategy, the level of ambition should be aligned with the level of ambition in order to achieve the emissions reductions
- Carbon farming of multiple functional vs. Issue on which arrives "in"
- Carbon farming can help to mitigate CC
- Not only focus on sink perspective but more on source perspective
- How land can continue to provide nature-based climate change mitigation services, What will we do when the carbon market fails?

Project “Carbon farming scheme”: both agriculture and forestry

1. How to value the biodiversity co-benefits of carbon removals in carbon farming?

- The activities with the highest negative and the most co-benefits to human wellness strategies such as degraded forest restoration
- The scale of financial incentives to invest in social costs of Carbon and also increasing biodiversity benefits increase financial benefits
- Forest, a large part of LUC/LULC. Afforestation is occurring in Europe. Unfavorable status of forests despite restoration
- Monitoring, it is important, audits is a must. We cannot monitor accountability or reduce carbon
- Need to strengthen the ecological order of sustainable forest management
- To improve the potential of carbon sequestration together with biodiversity, landscape perspective should be enhanced, using combinations of digital technologies
- Need to use landscape perspective, according to its natural potential
- Both short term and long term perspectives should be sustainable
- Carbon calculator under development, research biodiversity can be a tool to increase carbon sequestration
- Biodiversity in a way to promote carbon sequestration
- Conservation agriculture defined by the FAO and organic farming. Farming systems, Carbon sequestration is a change in paradigm for biodiversity carbon sequestration of conservation agriculture habitats, diversity in rotation and in crops. Multiple examples: 1. Black beetle, 2. Morlaí carbon, more photosynthesis, more food. Multiple benefits
- Large biodiversity quality should be implemented Forest has different business model for public and private forested areas

Insurance value of ecosystem: Experience for forest management and sustainable forest management certification
- Insurance value of ecosystems – valuing nature and climate change protection, Important property as a co-benefit of active land use policies, some valuation methods developed in partnership with the insurance industry
- Afforestation in the EU is slowing down due to scarcity of land. Mention of forest are certified
- Require a sustainable forest plan and sustainable forest management certification
- How to nature farming should be promoted
- Ecosystem services need to be measured and assessed, the system need to be reliable, reliable policies system in need. More, more services should be monitored

Forest grow slowly and the process is a long process. In the long run, we need to look in long perspective. Infringement of no systems services. Support small and medium size farming, improve the forest management
- The questions is linked to G3 about monitoring, I think we can use the valuation tool used under Article 7a reporting (Nature 2000)
- Nexting project can be started on the diverse areas around Amsterdam, this would be done supported by CAI-P, Natura 2000, and if necessary biodiversity strategy, LLVDU regulations
- Important of agroforestry
- Ecosystem integrity instead of biodiversity, importance of resistance of ecosystems
- All projects should assess their impact on biodiversity, with biodiversity carbon sequestration should only be the restoration of degraded forest.
- Before a environmental biodiversity, soil and water carbon benefits grid
- Recognize the specificity of each sector, at the level of methodologies
- Importance of biodiversity, carbon sequestration, Systems approach to identify priorities at risk with scientific conservation and agroforestry
- EU Forest strategy | A unique natural forestry
2. How to ensure that carbon farming activities do not significant harm biodiversity?

- Environmental assessment negative project should be banned.
- Keep natural peatlands in a natural state, no peatland extraction, no afforestation.
- Avoid areas with high biodiversity risks.
- No incentive for short-term carbon sequestration (fallow off with biodiversity).
- Avoid the best example of silica monoculture plantation on peatlands Denmark.
- Ban the use of synthetic fertilizers.
- Monocultures should not be eligible. Non-native trees should be avoided.
- Do not doing significant harm to biodiversity should be put in the pipeline.
- Accept only long-term carbon storage.

3. What tools and data could be mobilised to monitor impacts and cobenefits on biodiversity from carbon farming?

- Importance of DNH-Biodiversity. Reduction of the use of fertilizers in agriculture.
- Don’t allow monoculture plantations on peatlands. Avoid promoting non-native tree plantations.
- Carbon farming must seek for long term C storage (especially due to 2050 carbon neutrality target).
- DNH-Biodiversity is the minimal level for a biodiversity criteria under carbon farming, requirements to improve biodiversity status.
- Management-based approaches instead of result-based approaches, require a DNH-Dependence. Began way to align with CAP.
- Insurers should be approached.
- For new technical solutions for monitoring (RFID), need for methodologies close to farmers. Start from the existing, certifications and labels need to be accepted.
- Higher water levels in peatlands for instance can be monitored with satellites, but waterboards already are speeding up automatic monitoring, yearly reporting of the state of nature to the EU can be made more detailed so biodiversity monitoring is in there.

Finland carbon calculator. Then biodiversity calculator. Experience on field.

- Importance of monitoring to estimate climate benefits.
- Not only by remote-sensing data need for a certain level of monitoring at the level of project/methodologies.
- Examples in the Netherlands, nature inclusive premiums. Level of premiums related to biodiversity monitoring (number of species).
- Examples from French label-based carbon indicators of biodiversity for forest and agricultural areas.
- Article 17 of natural habitats, and under the restoration project law No duplication of this work. Expand the definition of ecosystem services to forests.
- Indicators vegetation type, structural classes, ecological connectivity.
- Multiple EU strategies: biodiversity on natural lands and biodiversity on agricultural lands, need to ensure connectivity.
- Association and administration data can already be used. Use of NALES/MAES (7) for monitoring.

- You need it be with the nature, monitoring using for new technical solutions, currently the technology is not lacking providing the factual actions that farmers are doing.
- Data and available tools are a good starting point.
- Good results comes from good combination of indicators.

- Avoid competition on carbon farming. Prefer a carbon budget approach.
- Business models have to distinguish private and public holdings.
- Rely on existing framework. Ensure Carbon farming is appropriately articulated to EU policies and tools, an integrated framework for individual land managers, alignment with EU targets.
- Combine new technologies of monitoring with traditional surveys.
- System to be connected to economic signals for stakeholders.
- Third party evaluations (science, academy, NGOs) and citizen science through a digital tracking tool.
- Mapping, in order to maximize biodiversity benefits from carbon farming, strategic design is required to help create Buffers and corridors around and between core protected areas.
- Article 17 reporting of MFA which is used by EEA for the State of Nature in the EU report.

- With a management-based approach carbon farming measures could be monitored in a similar way to the CAP and you can use the already available tools and datasets like the (ACV/PIS). No duplication of restoration plan, mapping of carbon farming initiatives.
Appendix B Breakout Room 2: Monitoring Carbon Removals

Examples of monitoring schemes and methodologies

- **Cyber-infrastructure in Finland - PECAN (part Laka)**: Suitability question was not discussed enough.
- **Certification Framework (France) GHG monitoring + co-benefits incl. socioeconomics across many sectors (Arelis)**: Additionality BAU.
- **Indigo for agricultural mineral soils**: Baseline established with soil samples to be supplemented with remote sensing once the methodology is fully calibrated. Growers sequester carbon through the implementation of regenerative farming practices. Multi-model forecasting used to forecast long-term effects.
- **OpenGeochub (50+40 meter RS prediction of soil properties)**: As basis for sampling systems.
- **IPEU Fast navigation program**: Calculation tool for GHGs at farm level. Includes hedges, grassland use. Detailed for ruminants, but not soil organic carbon issues (SOC).

Costs of monitoring and implementation issues

- **Reliability on carbon removal is important**.
- **Collective projects can decrease costs**: Costly.
- **Cell spectroscopy**: It’s cheaper. The collector is costly. Tranquilization of spectroscopy, but not always useful for noise cancellation of fluctuations. Calibration libraries should be open.
- **Large costs in administration schemes**: Auditors are costly. Solutions: Random verification, Public verification.
- **AGORA platform Q3**: Do methodologies allow for large scale decarbonization?
- **Monitoring of deep carbon is difficult until tech breakthrough**.

The right monitoring for the right land use

- **Farmer incentives are important**.
- **Valentin Bellssser**: Uncertainties are not always as important as efficiency of schemes. Asymmetry of information allows for it.
- **Grassland**: RS. Research needed. Protection of carbon is uncertain now. Soil sampling is needed in the beginning. 5-year verification period.
- **Forests**: Permanent = 100 years. Australia this is a disincentive => changed to 25 years. In USA 10 years.
- **Peatland**: Hard, Volume changes, Requires deep measurements, LIDAR. Permanence is easy. Proxies could be good. NL: Ground water-based measurements. **Soil type + ground water specific EF.**
Appendix C Breakout Room 3: Policy framework

<table>
<thead>
<tr>
<th>Problems</th>
<th>Objectives</th>
<th>Solutions</th>
<th>Comments/Additional Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of knowledge with the farmer about measures and effects on carbon sequestration, soil quality and production capacity</td>
<td>Lack of knowledge, land managers don't know what to do to access carbon payments (e.g., fear of administrative burden, lack of advisor training)</td>
<td>Lack of motivation, land managers don't find it profitable enough to implement carbon farming practices (e.g., perverse incentives to maintain climate-unfriendly practices)</td>
<td>Lack of knowledge on distribution and status of organic soils and appropriate mitigation measures among administrations, advisors and farmers</td>
</tr>
<tr>
<td>Policies must recognize a farmer's position and the knowledge on sequestration gaps and fine-tuning the sequestration factors. Cannot wait to act on this</td>
<td>Farmers must be aware of financial incentives and effect on productivity</td>
<td>Altering misconceptions that the potential is not there. Only 3% of agri- land is forested but causes 25% of emissions so potential is high</td>
<td>Very large differences in the effectiveness of measures. Reducing losses from drained peat soils => maintaining permanent grassland => carbon sequestration on arable land.</td>
</tr>
<tr>
<td>How can we ensure that required data remains property of the farmer?</td>
<td>-Sampling in increments (e.g., every 3 year sampling or longer term) - In this case they will not receive all the money in the first round identifying new actions that farmers can participate in</td>
<td>-Paying the costs of MRV</td>
<td>Misunderstanding - Re: functional demand (carbon for soil quality) Re: societal demand (carbon sequestration for off-setting)</td>
</tr>
<tr>
<td>-Communication campaign broader than this - Knowledge building campaign - Include good practice in policy sphere (e.g., CAP) to train farmers - Permanent coverage of the soil with cover crops highly important</td>
<td>- How does MRV contribute to climate adaptation, soil health - Connect importance of climate mitigation to daily farming practice</td>
<td>- How does MRV contribute to climate adaptation, soil health - Connect importance of climate mitigation to daily farming practice</td>
<td>Ismatch between point of obligation: national inventory - individual action</td>
</tr>
<tr>
<td>Creating a robust knowledge programme where the individual needs of farmers are met</td>
<td>-Good quality MRV = good quality carbon</td>
<td>-Results based monitoring = large monitoring overhead, activity based monitoring = limited levers for change</td>
<td>Do the National Strategic Plans offer opportunities for linkage?</td>
</tr>
<tr>
<td>Lack of harmonised, user-friendly and cost efficient monitoring tools to certify carbon removals</td>
<td>-Collaboration across institutions - underlying science must be connected to the policy</td>
<td>-Climate friendly practices are intrinsically connected to improving farming management - increases in soil sequestration</td>
<td>Trust is a key factor here.</td>
</tr>
</tbody>
</table>