Workshop on mitigation potentials, comparability of efforts and sectoral approaches

Hotel Kanzler, Bonn, 23rd March, 2009

The Sectoral Approach to Analyze Global Mitigation Potentials

Miyuki Nagashima

Systems Analysis Group
Research Institute of Innovative Technology for the Earth (RITE)

Contents

- CO2 emission outlook for "<u>Technology-frozen Case</u>" and "<u>Negative-Cost-Achieved (NCA) Case</u>"
- Regional emission reduction potentials in 2020
 - by cost
 - by cost and by sector
- Case studies considering differentiated responsibilities and capabilities for developed countries, major developing countries and other developing countries
- Conclusion
- Caveats

Assessment Framework: DNE21+ Model

- Linear programming model (minimizing world energy system cost)
- Evaluation time period: 2000-2050
 Representative time points: 2000, 2005, 2010, 2015, 2020, 2025, 2030, 2040, 2050
- World divided into 54 regions
 Large area countries are further divided into 3-8 regions, and the world is divided into 77 regions.
- Bottom-up modeling for technologies both in energy supply and demand sides (Technology improvements and innovative technologies are also considered.)
- Primary energy: coal, oil, natural gas, hydro&geothermal, wind, photovoltaics, biomass and nuclear power
- Electricity demand and supply are formulated for 4 time periods: instantaneous peak, peak, intermediate and off-peak periods
- Interregional trade: coal, crude oil, natural gas, syn. oil, ethanol, hydrogen, electricity and CO2
- Existing facility vintages are explicitly modeled.

⁻The model has high resolutions in regions and technologies to analyze sectoral approach.

⁻ Consistent analysis among regions and sectors can be conducted.

Scenario Definition

	г	1	г	1	٠,	7
	-	•			А	-
		1			1	St
						_
Re	sean	ch la	nsti	tute	of l	nnov
	Tech	nnol	logy	for	the	Eart

Case	Definition	
Negative-Cost- Achieved (NCA) Case	Emissions Scenario where <u>all the emission reduction</u> <u>measures below 0 \$/tCO2</u> are achieved.	
Technology- frozen Case	 <u>CO₂ intensity</u> (CO₂ per GDP): Fixed at the level of 2005 Regional GDP growth rate: Set based on the prospects by World Bank Industrial structure: Constant after 2005 This case is a hypothetical scenario to understand emission reduction potential from current technology level. 	

CO2 Emissions in Baseline and Tech.-frozen Case

Major developing countries (MEM): Brazil, China, India, Indonesia and South Africa

- The global CO2 emission in 2020 would almost double from the current level if intensity levels were fixed at the current level even in the future.
- Large efforts are required even for achieving the emissions in NCA Case (There are large opportunities for emission reductions of negative costs.).
- High emission growth in Non-annex I countries is estimated for the future.

Marginal costs for Annex I countries in 2020

Only energy-related CO2 emission reduction

CO2 emission reduction rate in Y2020 relative to GHGs in Y2005 [%]

((CO₂ in 2020)-(CO₂ in 2005))/GHG in 2005

- Marginal abatement cost (MAC) curves are different in each country.
- MAC for Japan is relatively high particularly at the cost below 100 \$/tCO2 due to high energy efficiencies of coal power plants and in most of the energy intensive sectors.

Reduction Potentials from Sectoral Technology-frozen Case

- There are large potentials for emission reductions at negative costs and relatively lowcosts (<20\$/tCO2) in the world regions.
- Reduction potentials of United States at marginal costs of below 20\$/tCO2 account for a large share (33%) of those in Annex I & OECD.
- Reduction potentials of China and India at marginal costs of below 20\$/tCO2 account for a large share (92%) in those of Major developing countries.

≤0\$/tCO2 (from Sectoral Technology-frozen Case)

CO2 emission reduction share [%]

Note: nuclear power scenarios are exogenously assumed for all the scenarios above 0\$/tCO2. Emission reduction potentials of CCS are excluded.

≤0\$/tCO2

- Power sector of Major developing countries:
 - Efficiency improvement of coal power plants
- Iron & Steel sector of all regions
 - Diffusion of energy saving equipment (CDQ; Coke Dry Quenching, TRT: Top pressure Recovery Turbine)
 - Diffusions of high-efficiency BF-BOF including next generation coke oven
- Transportation sector of all regions
 - Improvement of road infrastructure
 - Diffusion of ecodriving
 - Efficiency improvement of light-duty vehicle
- Residential & Commercial sector of all regions
 - Efficiency improvement of various appliances (space heating, lighting, etc)

0-20\$/tCO2

CO2 emission reduction share [%]

Note: nuclear power scenarios are exogenously assumed for all the scenarios above 0\$/tCO2. Emission reduction potentials of CCS are excluded.

- There are large potentials of more introduction of high-efficiency gas power plants in major developing countries, and some potentials of wind power in Annex 1 & OECD.

20-50\$/tCO2

CO2 emission reduction share [%]

Note: nuclear power scenarios are exogenously assumed for all the scenarios above 0\$/tCO2. Emission reduction potentials of CCS are excluded.

- There are some potentials of more introduction of high-efficiency gas power plants and renewables (wind power) in power sector.

Case Studies (for year 2020)

Case	Developed countries (Annex I & OECD)	Major developing countries (MEM)	Other developing countries
NCA Case	0 \$/tCO2	0 \$/tCO2	
20-0	20 \$/tCO2	0 \$/tCO2	
50-0	50 \$/tCO2	0 \$/tCO2	0 \$/tCO2
50-20a	50 \$/tCO2	Macro CO2 intensity target corresponding to 20 \$/tCO2	
50-20b	50 \$/tCO2	CO2/energy intensity target for selected sectors corresponding to 20 \$/tCO2	

Major developing countries (MEM): Brazil, China, India, Indonesia and South Africa

Selected sectors: power, iron&steel, cement, aluminum and transportation sectors

Expected CO2 Emission Reduction

Global Reduction Potentials from Sectoral Technology-frozen Case

- The reduction potential at 0–20 \$/tCO2 in developed countries is about 1.0 GtCO2, and that at 20-50 \$/tCO2 is about 1.8 GtCO2.
- The reduction potential at 0–20 \$/tCO2 in major developing countries is about 4.1 GtCO2.
- Large-scale emission reductions of 3.3 GtCO2 could be achieved even if CO2 intensity targets for major sectors are assumed in major developing countries.

Conclusion (1/2)

- By introducing the two Cases, <u>Negative-Cost-Achieved Case</u> and <u>Tech.-Frozen Case</u>, the emission reduction potentials of negative costs were estimated besides those of positive costs.
- ◆ The global CO2 emission in 2020 would almost double from the current level if intensity levels were fixed at the current level even in the future.

- Reduction potential below 0\$/tCO2 is large.
- Global potential in 2020 is 10.6 GtCO2, 3.8 Gt in developed countries, 5.3 Gt in major developing countries, and 1.5 Gt in other developing countries.
- Potentials are mainly in the <u>Power Sector</u>, <u>Transportation Sector</u> and <u>Iron & Steel Sector</u>.
- Countries which made <u>continuous energy saving efforts</u>, such as Japan, have relatively small reduction potentials of negative costs.

Conclusion (2/2)

- The <u>cooperative measures</u> between developed and developing countries are key to large emission reductions at low cost.
- ✓ The emission reduction potential at the cost of 0–20 \$/tCO2 in developed countries is about 1.0 GtCO2, but that at the cost of 20–50 \$/tCO2 is about 1.8 GtCO2.
- ✓ On the other hand, the emission reduction potential at the cost of 0–20 \$/tCO2 in major developing countries is about 4.1 GtCO2.
- Large-scale emission reductions of <u>3.3 GtCO2</u> could be achieved even if <u>CO2 intensity targets for major sectors</u> are assumed in major developing countries.
- This result is one example of the projections of emission path ways. The
 effort levels, e.g. marginal cost of \$20/tCO2 etc., should be considered in
 further discussions.

Caveats

- Models are much simpler than real societies.
- There are large uncertainties of several assumptions, e.g., population, GDP, technology perspectives, in the model.
- The emission reduction potentials of CCS were excluded in this analysis due to large uncertainties. However, the potential will be large.
- Marginal cost of emission reductions is NOT the sole indicator of fair and reasonable emission reduction targets.

Thank you for your attention.

Appendix

Region Divisions of DNE21+

World divided into 54 regions

Technology Descriptions in DNE21+ (1/2)

Technology Descriptions in DNE21+ (2/2)

-An Example for High Energy Efficiency Process in Iron & Steel Sector-21

BF: blast furnace, BOF: basic oxygen furnace, CDQ: Coke dry quenching,

TRT: top-pressure recovery turbine, COG: coke oven gas, LDG: oxygen furnace gas

Comparisons of Energy Efficiency (1/2)

Iron & steel (2000)

Cement (2000)

Waste biomass use is excluded in the energy efficiency. Source: Estimates by RITE from Humphreys and Mahasenan (2002), IEA (2006) etc.

Comparisons of Energy Efficiency (2/2)

Assumptions of DNE21+ (1/3)

Population: UN2006 Medium Scenario

Assumptions of DNE21+ (2/3)

GDP

-Y2030: Projections by Japan Center for Economic Research (provided in December 2008)

Y2030-2050: Based on IPCC SRES B2 (2000)

Global average 2005-20: 3.0%/yr

Year

Assumptions of DNE21+ (3/3)

Iron & Steel (Crude steel production)

Cement (Cement production)

