



# Scroll Chillers – Transition from HCFC-22 to HFCs

An HVAC Manufacturer's Perspective

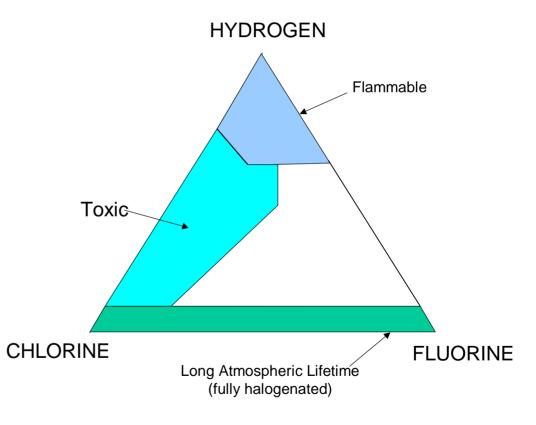
Todd Brown
McQuay International
Business Development Manager – Chillers
todd.brown@mcquay.com
ICF Workshop, Montreal Canada, April 5, 2008

# **Agenda**

- HCFC-22 Alternatives for Scroll Chillers
  - Zeotropes/azeotropes
  - Lubricants

- Manufacturing/Production Challenges
  - Making the transition
  - Factors affecting cost




### Refrigerant Chemistry And HCFC-22 Alternatives

- Only A Small Number Of Chemicals Can Meet Refrigerant Requirements
- Fluorocarbons Are Among The Best
- Many Other Groups Have Been Investigated But They Have Been;
  - Toxic
  - Flammable
  - Poor Performers

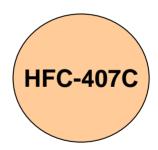


#### **Fluorocarbons**

- HCFCs and HFCs
- Limited Combinations
  - Adding Chlorine Or Bromine
     Increases ODP
  - Adding Fluorine Increases
     GWP
  - Adding Hydrogen Increases
     Flammability






#### **HCFC-22 Alternatives**

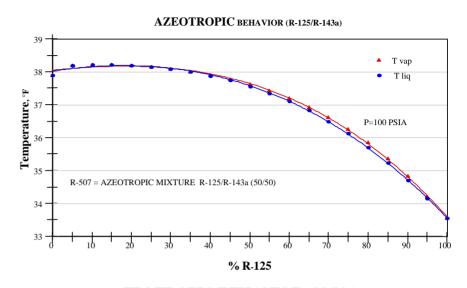
- Identified by Alternative Refrigerant Evaluation Program (AREP)
  - Industry backed program of major refrigerant suppliers and manufacturers

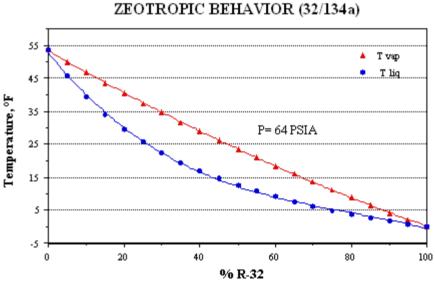
### **Major Scroll Chiller Candidates**

HFC-410A

Zeotropic Blend HFCs 32(50%), 125(50%)




Zeotropic Blend HFCs 32(23%), 125(25%), 134a(32%)




### **Blends**

- Mixture Of Two Or More Refrigerants
- Near Azeotropic
  - Components Behave As One Refrigerant
  - R-410A

- Zeotropes
  - Changed Saturation
     Temperature As It Boils
     (Glide)
  - R-407C







### **Major Scroll Chiller HCFC-22 Alternatives**

| <u>A</u>           | <u>zeotrope</u> | <u>Zeotropic</u> |          |
|--------------------|-----------------|------------------|----------|
| Refrigerant        | 134a            | 407C             | 410A     |
| Capacity           | 67%             | 95%              | 141%     |
| Efficiency         | 95-97%          | 95-101%          | 102-105% |
| Suction Press, abs | 59%             | 91%              | 159%     |
| Cond Press, abs    | 68%             | 115%             | 157%     |

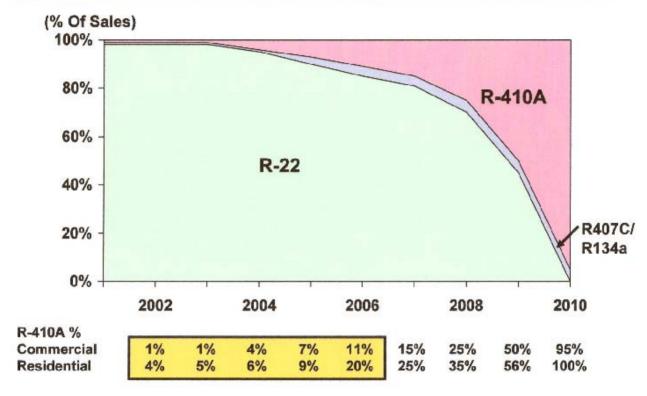


#### R-407C

- Zeotropic Mixture
  - 23% HFC-32
  - 25% HFC-125
  - 52% HFC-134a
- 8F (4C) Glide
- Drop in replacement for R-22 (change the oil though!)
- Great solution when there's no time to redesign equipment
  - Save money by not redesigning
- A1 Refrigerant (ASHRAE Standard 34)
- Must be liquid charged to ensure proper mixture



#### R-410A


- Zeotropic Mixture
  - 50% HFC-32
  - 50% HFC-125
- 1F (0.5C) Glide
- Higher operating pressure (50% higher than R-22)
  - Requires new system design
  - More robust equipment = less leaks
- A1 refrigerant
- Properties
  - High heat transfer
  - Lower pressure drop
  - Reduced refrigerant charge

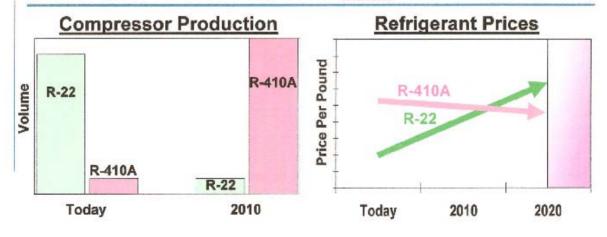
**Higher Efficiency!** 



# What Others Are Saying?

#### A/C Refrigerant Trends – North America Systems To 100 Tons



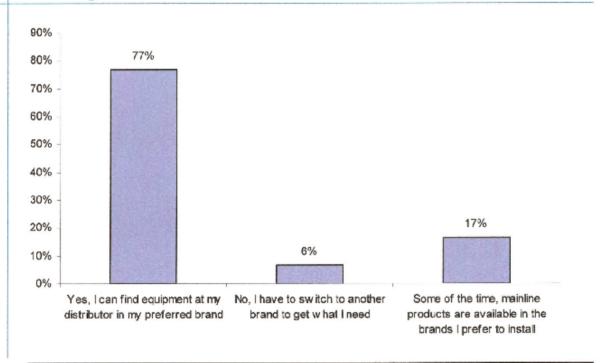

Karl Zellmer Vice President of Sales Emerson Climate Technologies September 26, 2007



## What Are Others Saying?

#### End-Users Predominantly Buying R-22

- Majority Of End-Users Are Still Buying R-22 Systems
- These Systems Will Be Phased-Out In 2 Years!
- R-22 Service And Maintenance Costs Will Only Increase
  - Expect Service Refrigerant <u>Availability</u> And <u>Cost</u> Issues
  - Expect Service Compressor Costs To Climb




Karl Zellmer Vice President of Sales Emerson Climate Technologies September 26, 2007



## What Are Others Saying?

# Is it easy to find systems with R-410A that meet your needs?



Contractors Not Having Trouble Finding R-410A Systems

Karl Zellmer Vice President of Sales Emerson Climate Technologies September 26, 2007



#### For Scroll Chillers R-410A Is U.S. Industry Choice

- Best Long-Term Solution
  - Best Proven Performance & Reliability (11 Years)
  - No Ozone Depletion
  - 2-5% Higher EER
  - No Fractionation / Glide (Service)
  - Cost Optimization (Less Copper / Less Charge)
  - Systems Available
  - Enhanced Reliability
  - Future Compressor Enhancements



#### Lubricants

- Lubricants are picked for their miscibility with a refrigerant
- Mineral Oil
  - used with R-22
- Polyolester (POE)
  - Used with R-410A and R-407C
  - Good thermal stability
  - Good lubricity
  - Compatible with material
  - Excellent solvent
  - Will absorb moisture

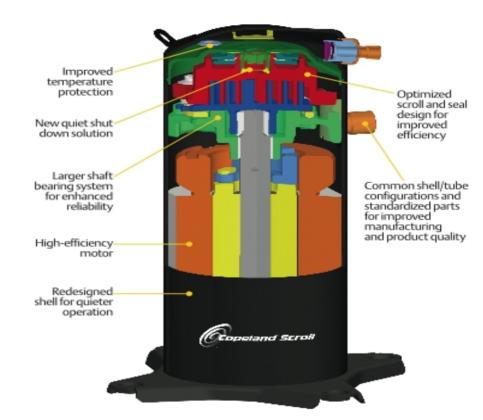


# **Polyolester Maintenance Notes:**

- Since POE will absorb moisture from the air
  - Keep POE containers sealed at all times
  - Do not leave compressors or systems open to the air for over 15 minutes
  - System must be vacuumed to at least 500 microns
  - Some moisture may be removed using filter dryers
- Make sure technicians are trained for the new refrigerant and the new lubricant



# **Transitioning to HFC's**


- Most companies are still transferring technology to HFC's
- Transferring is occurring through
  - Introducing R-410A on small scale or pilot production
  - Gradually reduce R-22 and increase R-410A production
  - Use R-407C for immediate change over
- Training is required throughout the process





# Factors affecting cost in moving to HFC's

- R-410A: 10 to 15% more costly
  - Higher operating pressure, thus equipment needs a redesign
  - Thicker compressor shell, heavier wall tubing, superior control and protection
  - Better welds required
  - Better efficiency of refrigerant does allow less copper to be used in heat exchanger
  - 25-30% reduction in refrigerant charge
- R-407C drop in for R-22
  - No need to redesign





# **Summary**

- R-410A has some advantages over R-407C
  - Though R-407C does not require a redesign of equipment
  - Need to get the oil out
- Most manufacturers (US) are almost totally transitioned from HCFC refrigerants to HFC refrigerants.
- All manufacturers are considering new technology to achieve global climate objectives.



### Is there a permanent solution?

- Quick answer
  - Not yet
  - Everyone wants a different answer
- The good news?
  - We are learning about problems at a much quicker rate and making changes faster
- Innovations
  - On a component basis
  - On a refrigerant level
  - On a systems level



# **Questions or Comments?**



