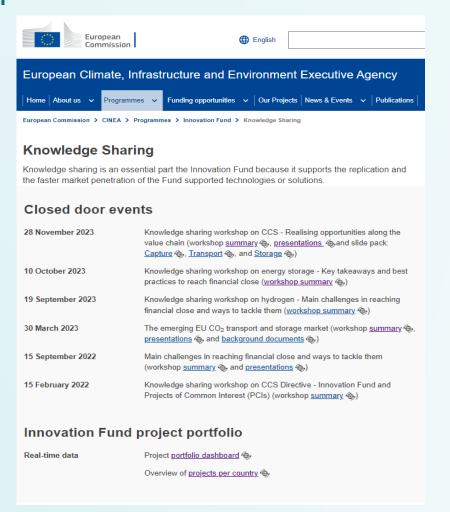

Knowledge sharing report and indicators

Maria Alfayate, CINEA, Deputy Head of Unit Innovation Fund

Information to be shared and activities to be undertaken by the project at the different project stages in order to:


- de-risk the innovative technologies or solutions with regard to scaling up to a commercial size
- accelerate deployment and commercialisation of innovative technologies.

Three priorities:

- 1. Sharing the knowledge within the IF projects
- 2. Promote synergies with other EU programmes
- 3. Policy feedback to the European Commission

Knowledge Sharing - Annual Report

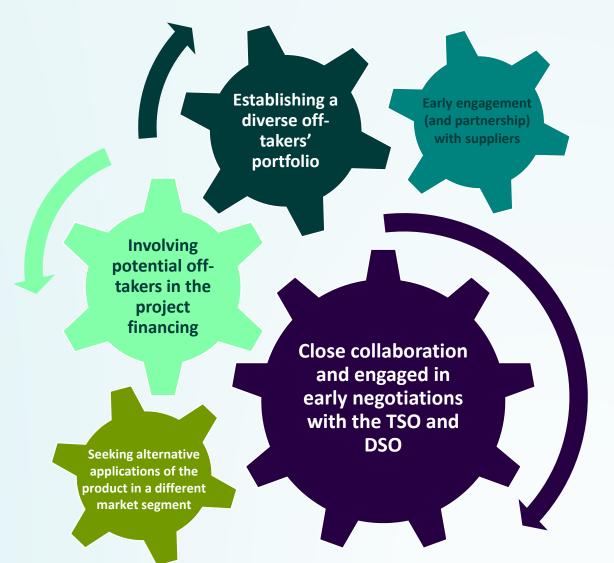
COMING SOON (June 2024)

Knowledge Sharing Annual Report

This report sheds light on **challenges** related to difficult market conditions, securing finance and off-take agreements,...as well as **insights** into how IF projects apply different strategies to overcome these challenges.

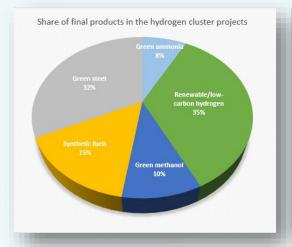
Knowledge Sharing Annual Report Sneak preview of the challenges

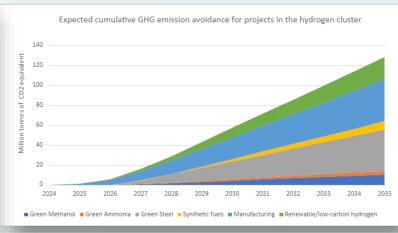
Common challenges of IF projects

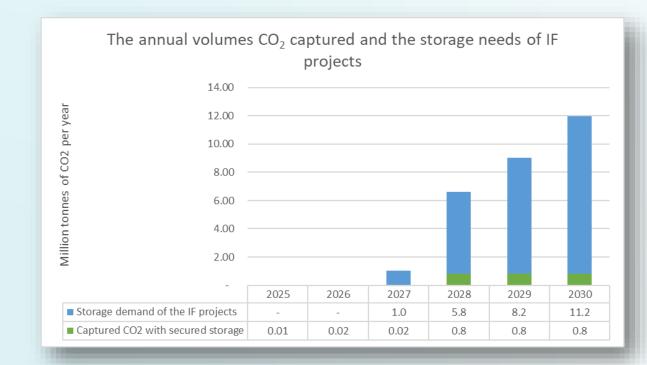

- Challenging market conditions with direct and indirect consequences: delays caused by supply chain disruptions, higher capital expenditures and higher cost of capital
- Regulatory bottlenecks and challenges with permitting
- Technical constraints causing delays
- Securing finance

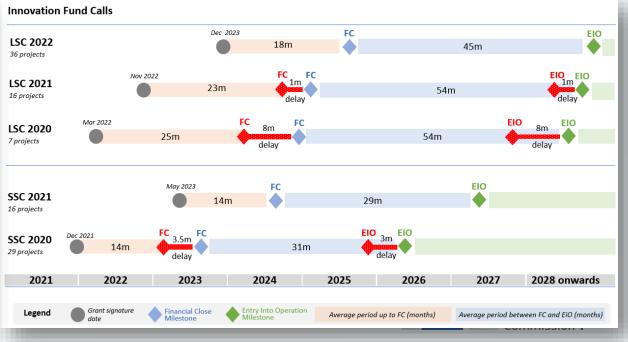
Challenges in specific clusters of IF projects

Ells	Hydrogen	ccs	Renewable energy	Energy storage
 Delays or disruptions in the supply chain Securing grid connection and adequate grid capacity High production costs and difficulties to secure off-take agreements 	 Alignment of renewable electricity supply with hydrogen production Securing off-takers Complex permits Lacking established European standards 	 Scarcity of CO2 storage sites Risk-sharing and risk-management mechanisms must be addressed across a value-chain Lacking CO2 standards for transport Difficulties in monetising the generated negative emissions 	 Securing off-takers Regulatory and permitting constraints 	 Regulatory and permitting challenges Challenges in establishing viable business models for deploying energy storage systems Increases in materials and semiconductors, impacting the costs of electrical equipment




Knowledge Sharing Annual Report Sneak preview of the lessons learned and solutions





Knowledge Sharing Annual Report sneak preview

Knowledge Sharing – closed-door workshops

COMING SOON

Renewable Energy value chain summary

This summary provides **key takeaways** to strengthen and debottleneck the renewable value chain, focusing on permitting, financing, public acceptance, and manufacturing.

Other available summaries and presentations:

- CCS
- Hydrogen
- Energy storage
- Main challenges in reaching financial close by the IF projects and ways to tackle them

Consultation on the Innovation Fund knowledge sharing indicators

Joao Serrano Gomes, DG CLIMA, Policy Officer - C.2 - Low Carbon Solutions (II): Research & Low Carbon Technology Deployment

Objectives & Content of the stakeholder consultation

 Content: refinement of the existing technological/engineering/operational indicators we require from IF projects as part of their Knowledge Sharing requirements.

Objectives

Better understanding of IF projects progress, challenges and trends

Leverage the expertise of the private sector

Accurate and updated information on technological advancement

Informed and data-driven policy formulation

Filling the existing IF indicator gaps

Structure of the contribution

Your input required:

- Based on sectoral expertise, we will consult industry associations on a specific draft list of indicators that needs confirmation, refinement and/or additions.
- If a sector-specific list is not yet available, we will ask industry associations to create a list of indicators for their sector, using an existing list as a reference.

A single guiding question for the consultation

 Based on the current indicators, what additional technical, economic, management, environmental, and regulatory information would help accelerate the adoption of innovative technologies without compromising intellectual property rights, competitiveness, or first-mover advantage?

How the draft list of indicators appears (e.g CCUS)

Indicator Category	Subcategory	Indicator name	Instructions for Project coordinators	Type of indicator	values and engineering units
A1.1 capture		CO2 capture energy efficiency	Energy needed per unit of CO2 capture (MWh/tCO2 captured, Lower	value	
A1.1 capture	A1.1 capture	Coz captare chargy chloratory	Heating Value)	Value	MWh/(t CO2 captured)
A1.1 capture	A1.1 capture	CO2 stream specification after capture	CO2 stream specifications before entering the compressor (and based on CO2 metering equipment location), including any deviations from	free text	
A1.1 capture	A1.1 capture	Does the project implement a capture step itself?	Determine whether the project implements a capture step itself or if the capture step is implemented outside the boundaries of the project	drop-down	yes/no
A1.1 capture	A1.1 capture	Does the project include bioenergy with carbon capture and storage (BECCS)?	Self-explanatory	drop-down	yes/no
A1.1 capture	A1.1 capture	Does the project produce blue hydrogen?	Determine whether the project include capture of (most of) the CO2 emitted during the production of hydrogen from lossil sout es	drop-down	yes/no
A1.1 capture	A1.1 capture	Is CO2 acquired from third parties?	Self-explanatory.	drop-down	yes/no
A1.1 capture	A1.1 capture	CO2 capture rate	Full load capture rate. If plant base of been on erated at full load, please provide estimate base on partial load data. Capture rate	value	%
A1.1 capture	A1.1 capture	The source of CO2 captured	Source call be: name it production clomass, the atnosphere, etc.	free text	
A1.1 capture	A1.1 capture	Volume of CO2 captured annually	Volume C 2 is ich a captured each year and then fed to the project (m) us possible losses). It can be captured by the project itself or	value	ton
A1.2 waste	A1.2 waste	Handling and disposal of the by-product and vaste streams	exploration by-products and waste are handled and disposed in the frame work of the project.	free text	
A1.3 storage	A1.3 storage	CO2 stream specification activitied at the torage site	CO2 stream specifications required at the storage site by the storage provider.	free text	
A1.3 storage	A1.3 storage	Does the project implement the storage or utilisation step itself?	Self-explanatory.	drop-down	yes/no
A1.3 storage	A1.3 storage	Downtimes	Explain the number and duration of downtimes in the previous operating year, and the reasons behind them.	free text	
A1.3 storage	A1.3 storage	Is storage covered through a service contract?	Self-explanatory.	drop-down	yes/no
A1.3 storage	A1.3 storage	Performance description	Describe the overall performance of the storage operations, including injection, permanence of storage, etc.	free text	
A1.3 storage	A1.3 storage	Storage installation overview	A summary of the storage installation including brief description of the facilities onshore and offshore	free text	
A1.3 storage	A1.3 storage	Summary of the monitoring plan	Self-explanatory.	free text	

Timeline for the consultation on indicators

Start of the consultation

Mail from CLIMA
 INNOVATION FUND
 on 13th of June
 outlining the
 instructions for the
 consultation

Consultation Period

 2-week consultation period ending on
 28th of June

Follow-up with participating stakeholders

- The final list of indicators is shared with participating stakeholders
- Planned for Q3 2024

