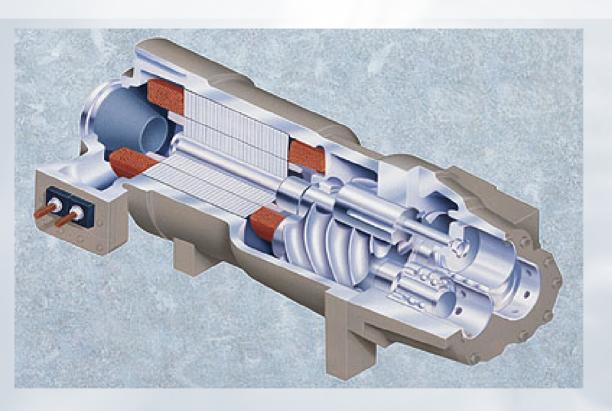
HCFC Refrigerant Transition Helical Rotary Chillers


Jeff Moe

VP & Chairman, Environmental Policy Council

Trane

April 5

Compressor type

Compressor cut-away

Compressor rotors

Applications

Deliver chilled water for air conditioning or process cooling applications (70 tons/245 kw to 500 tons/1750 kw)

Air-Cooled (outdoor)

Water-Cooled (indoor)

Key points

- Solution-of-choice: HCFC-22 → HFC-134a
- While solutions are known, they are not fully commercialized in A5 countries
- Alternative selection needs to consider energy efficiency, fluid Global Warming Potential, safety, cost
- A coordinated volume ramp-up between refrigerant, equipment manufacturing, and service infrastructure development is important to minimize cost impact and make for a smooth transition
- Service infrastructure is important and takes time for proper development

Global product markets*

	Air Cooled	Water Cooled
· US\$	1.3 billion	0.8 billion
• Units	25,000	20,000
Average size (tons/KW)	148/503	220/748
 Refrigerant amount (millions of kg) 	3.4	4.0
*Trane estimates		

>40% is in A5 countries

Environmental impact

ODP impact:

◆ A5 Countries = ~176 ODP-tonnes (100% HCFC-22)

Direct GWP opportunity:

◆ A5 Countries = ~1.2 million tonnes CO2-eq (100% transition from HCFC-22 to HFC-134a)

CO2 emissions impact from energy efficiency

- Specifics depend on country policies
- Energy efficiency impact > direct GWP impact

Investments

- Refrigerant capacity & supply chain development
 - Facility expansion or transition
 - Capacity/demand ramp-up is critical

Global & country-specific capacity vs. demand growth is critical to smooth ramp-up

Investments

Product technology transfer

- Varies significantly by facility type (from <US\$1 million to US\$10 million)
- New hardware (refrigerant-handling equipment) ...capital investment
- New software (run-test facilities)...manpower/expense investment

Solutions are known, execution is critical

Investments

Service infrastructure

- ◆ Training (By person)
- New equipment (By truck or facility)
- Cannot happen all at once

Solutions are known, execution is critical

Challenges for the transition

Capacity & supply chain development

 Certainty of transition is important to cost & reliable supply

Technology transfer

- Performance/cost
- Product reliability
- Non-refrigerant customer requirements

Service infrastructure

- Training
- Equipment acquisition
- Over time, not all at once

Consumers show little value for non-ODS fluids

- Investments are risky without firm phase out schedules
- The tendency is to retain HCFC-22 systems

Consensus needed for a balanced solution, considering fluid GWP, energy efficiency, safety

Non-HFC fluid technology

Non-HFC fluid technology was considered, but it increases indirect CO2 emissions due to poor energy efficiency or raises significant human safety considerations

CO2 efficiency comparison

Coefficient of Performance

HFC-410A	6.56	
HFC-134a	6.94	105-93% advantage over CO2
CO2	3.40	
HCFC-22	6.98	

Trane estimates: theoretical fluid efficiency

Chilled water application conditions

Human safety considerations

Use in current designs has significant safety concerns:

- Hydrocarbons
 - High explosive energy
 - Servicing and for building occupants
 - Residential and commercial applications
- Ammonia:
 - Flammable and toxic
 - Most applications today are installed remotely, at significantly higher costs

Lessons learned

- Performance/cost penalty when moving from HCFCs to HFCs
 - Non-refrigerant technology needed to offset cost add
 - Examples: Heat exchanger, compressor
- Service infrastructure development takes time
 - Start awareness early, clarify phase out schedule
- Energy efficiency policy coinciding with HFC introductions leverages development
 - Minimize cost increase
 - Cost-effective climate change mitigation

What does the future hold?

- Considering energy efficiency, fluid GWP, safety and cost...
- Considering that vapor compression technology delivers, by far, the most cost effective energy efficiency...
- Considering indicators in energy efficient, safe, low GWP alternatives...

- Now: "Best" solutions for near-term compliance
- Next: "Efficient, safe, Low-GWP alternatives" within next decade
- Following: commercialization into applications