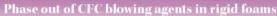
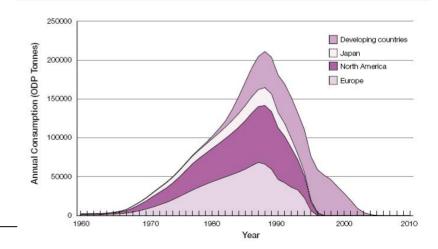
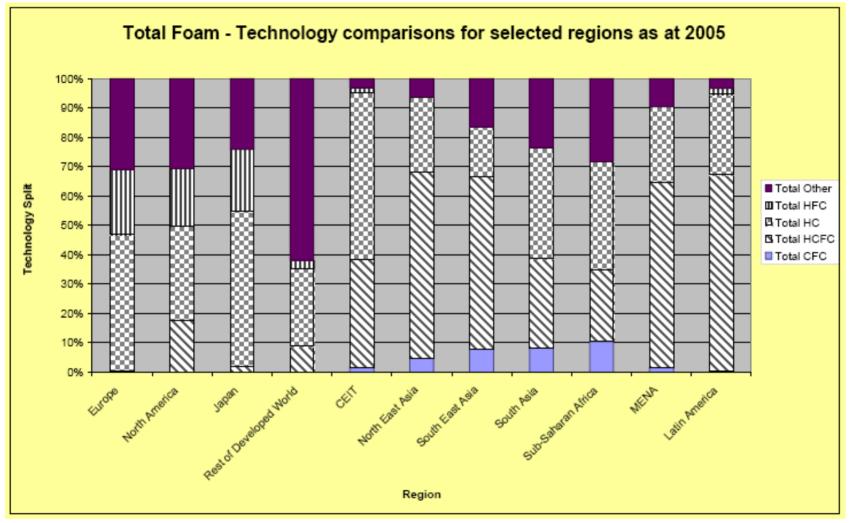

Challenges to Replace ODS in PU Appliance Foams in Developing Countries

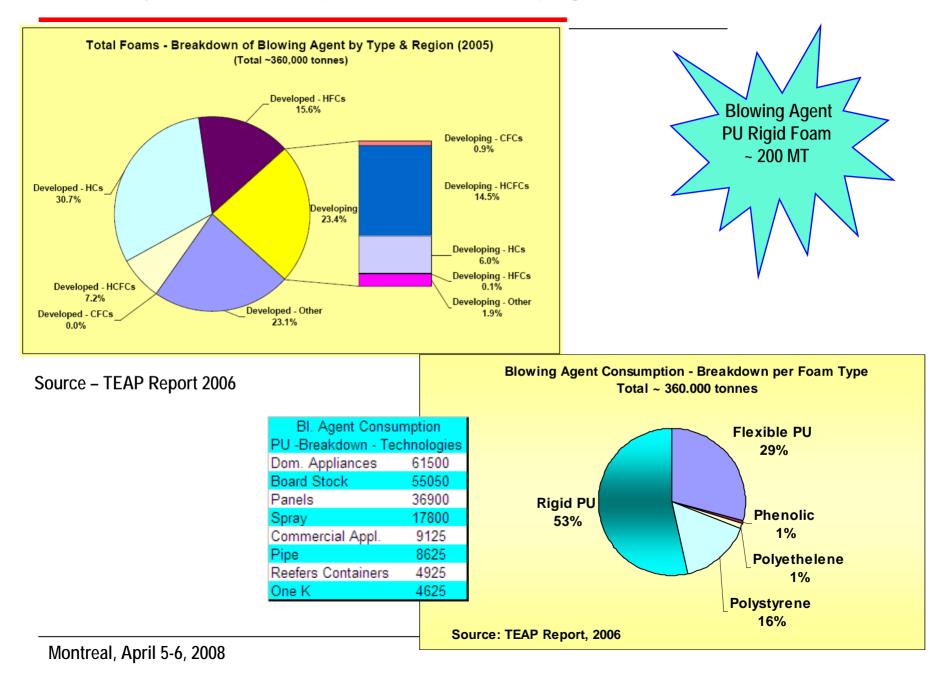

Paulo Altoe – Dow Brazil


April 2008

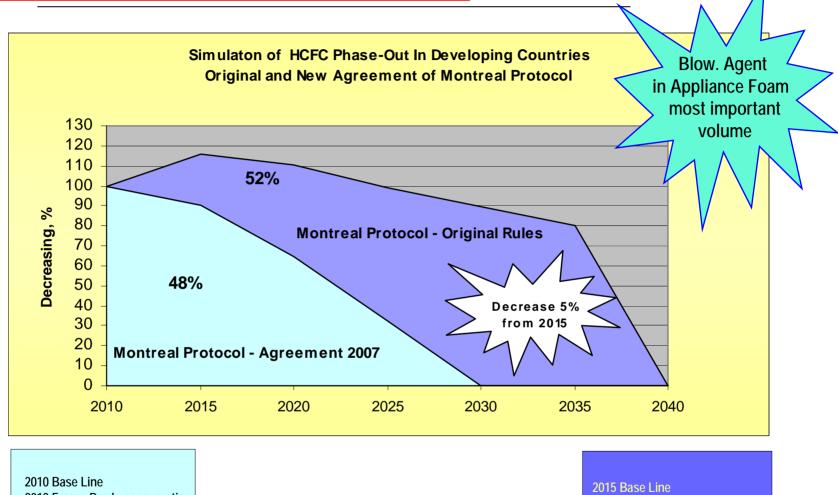
Blowing Agent Status - Phase Out of CFC and Growth Predictions for Blowing Agents



Source – TEAP Report 2006

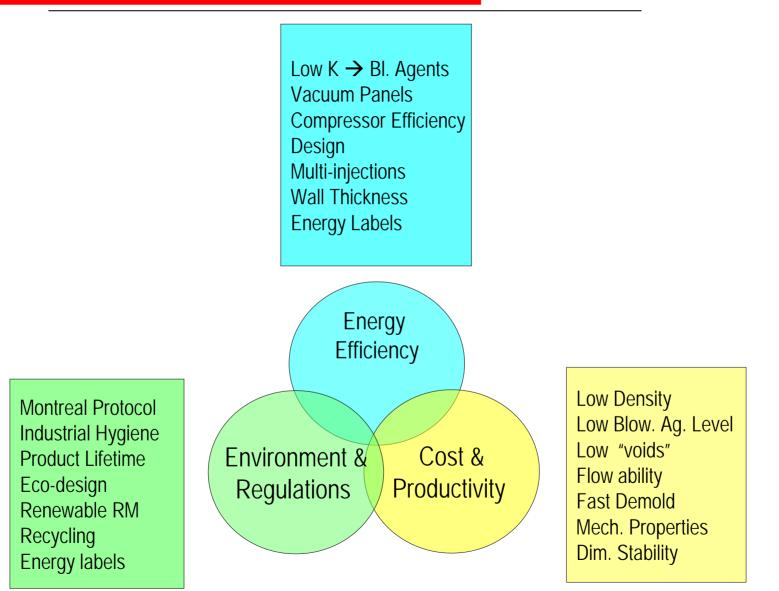


HCFC – Major Volume for Replacement \rightarrow Developing Countries



Source – TEAP Report 2006

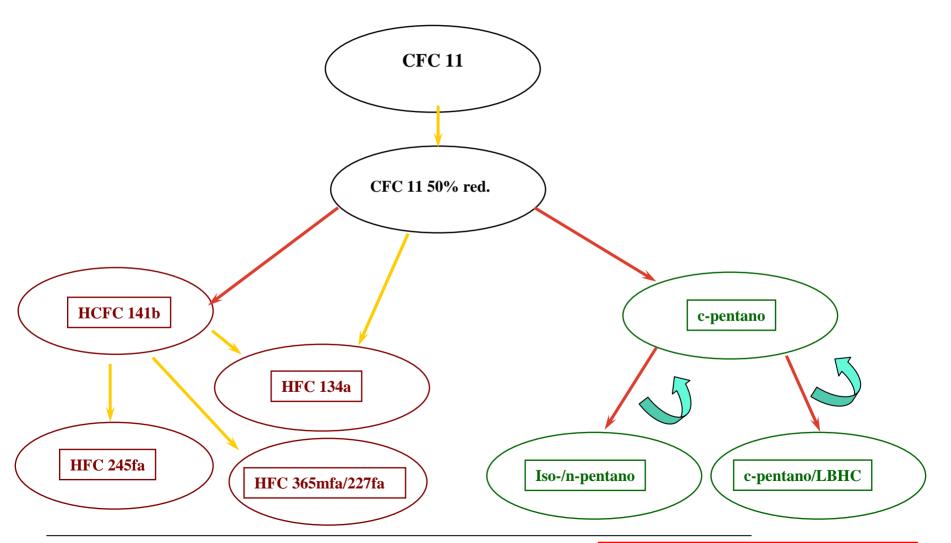
HCFC – Major Volume for Replacement \rightarrow Developing Countries


HCFC – Major Volume for Replacement \rightarrow Developing Countries

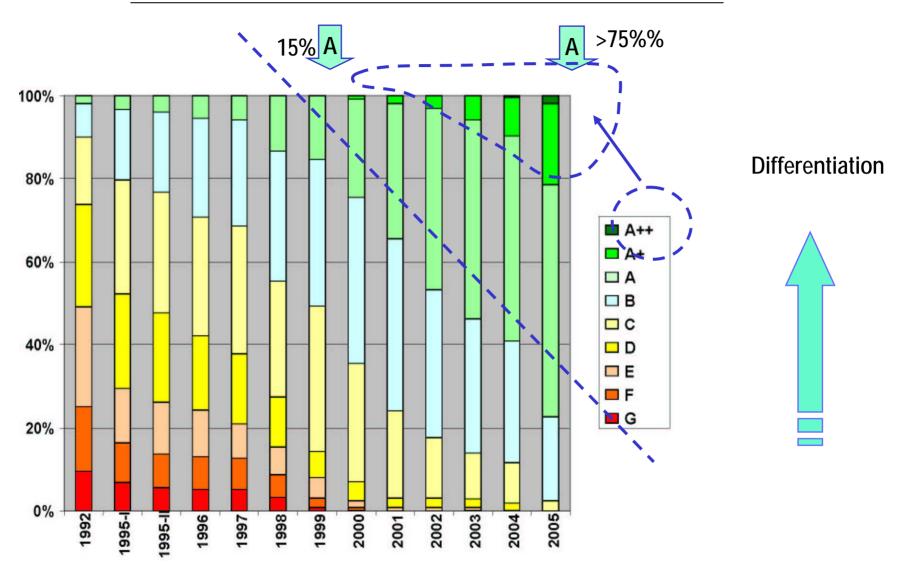
2013 Freeze Prod., consumption 2015 Reduction 10% 2020 Reduction 35% 2025 Reduction 75% 2040 Reduction 100%

2016 Freeze Prod., Consumption

2040 Reduction 100%



Energy


>Environment

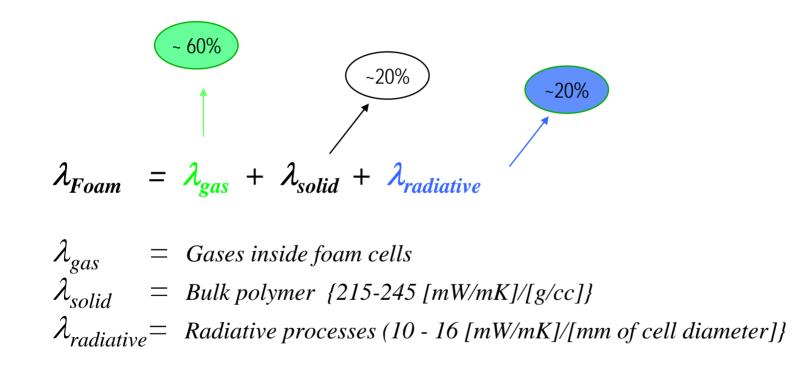
Cost

Blowing Agents History in PU Rigid Foams Technology for Appliances

Energy Eficiency and Marketing Need: Refrigerator's energy classes 1992 – 2005 (CECED)

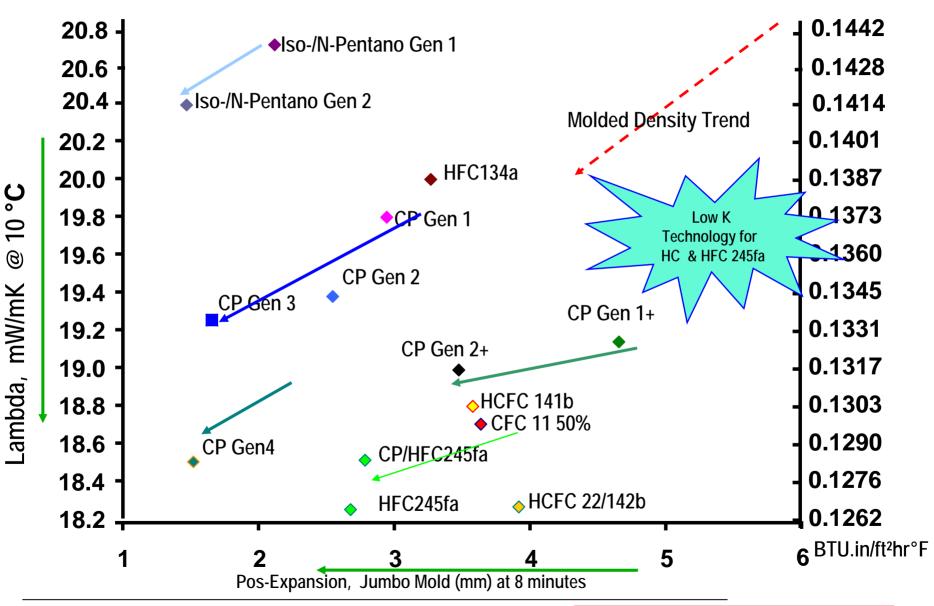
Class A has become market reference

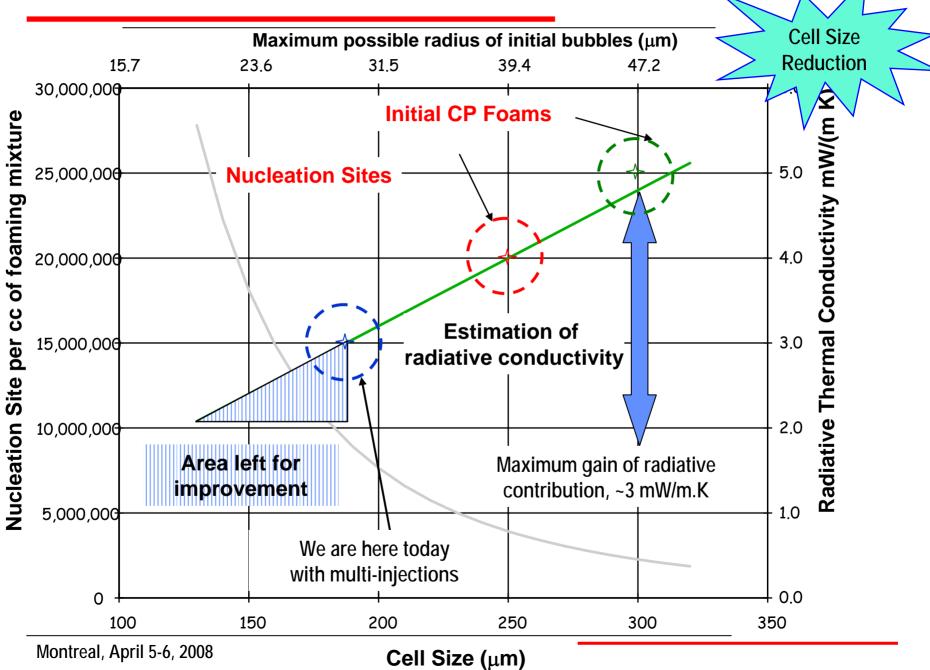
Challenges of HCFC Replacement > Right Choice of Blowing Agents


Physical and Environmental Properties of Blowing Agents

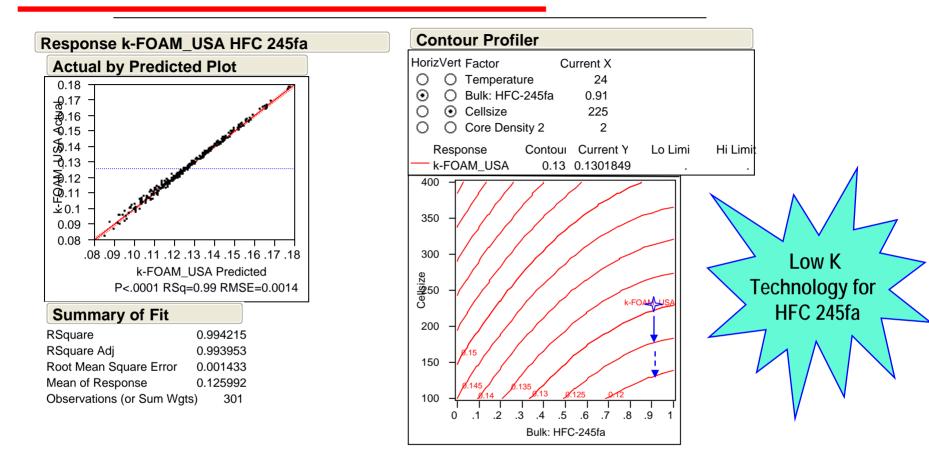
How to address Energy Efficiency Environment & Regulations and Costs ?

Fluorinated Blowing Agents										
	CFC-11	CFC-12	HCFC-22	HCFC-142b	HCFC-141b	HFC-134a	HFC-152a	HFC-245fa	HFC-365mfa	HFC-227ea
Chemical Formula	CFCI3	CCI2F2	CHCIF2	CH3CCIF2	CCI2FCH3	CCI2FCF3	CHF2CH3	CF3CH2CHF2	CF3CH2CF2CH3	CF3CHFCF3
Molecular Weight	137	121	86	100	117	102	56	134	148	170
Boilling Point, C	24	-22	-41	-10	32	-27	-25	15.3	40.2	-16.5
Gas Conductivity	7.4	10.5	9.9	8.4	8.8	12.4	14.3	12.5	10.6	11.6
mW/mK at 10 C										
Flammable Limit in air, Vol %	None	None	None	6.7-14.9	1.4-8.0	None	3.9-16.9	None	3.8-13.3	None
TLV or OEL (USA), ppm	1000	1000	1000	1000	500	1000	1000	N/A	N/A	1000
GWP (100yr)	4000	8500	1700	2000	630	1300	140	820	840	2900
ODP	1.0	1.0	0.055	0.055	0.11	0	0		0	0
Source: TEAP Report, 2006										

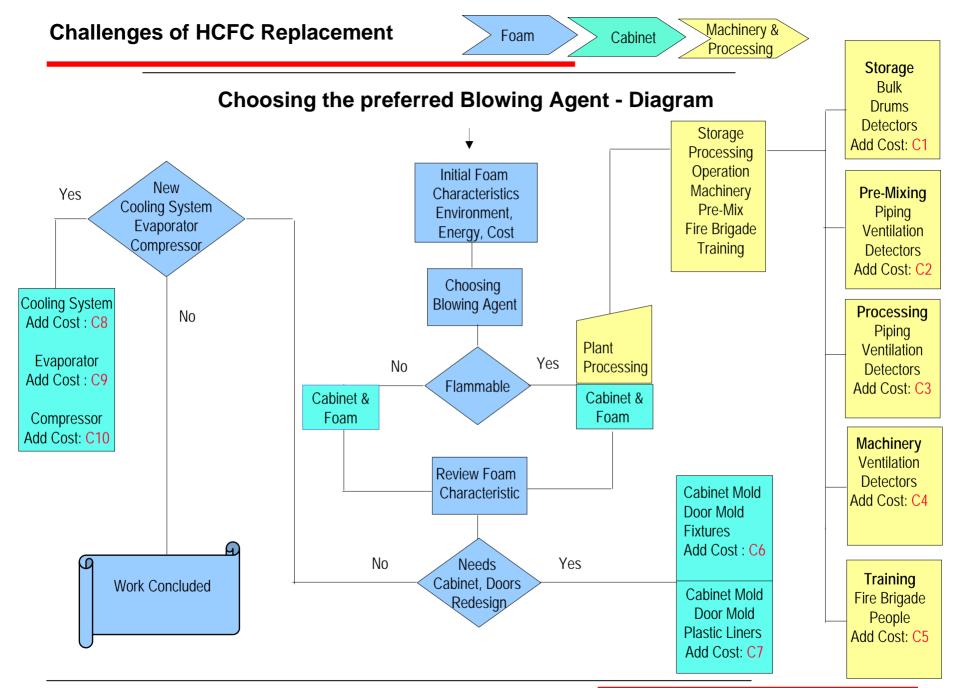

Non Fluorinated Blowing Agents										
	Methylene Chloride	Trans-1,2-	Isopentane	Cyclo-pentane	n-pentane	Carbon	Isobutane	n-butane	Mehtyl Formate	Water
		dichloroethylene				Dioxide			Ecomate ®	CO2
Chemical Formula	CH3Cl2	C2H2Cl2	CH3CH(CH3)CH2CH3	(CH2)5	CH3(CH2)3CH3	CO2	C4H10	C4H10	CH3(HCOO)	H20
Molecular Weight	84.9	97	72.1	70.1	72.1	44.0	58.1	58.1	60	18
Boilling Point, C	40	48	28	49.3	36	-139	-11.7	0.5	31.5	100
Gas Conductivity	N/A	N/A	13.0	11.0	14.0	14.5	15.9	13.6	10.7	14.5
mW/mK at 10 C						(
Flammable Limit in air, Vol %	None	6.7-18	1.4-7.6	1.4-8.0	1.4-8.0	None	1.8-8.4	1.8-8.5	5.0-23.0	None
TLV or OEL (USA), ppm	35 to 100	200	1000	600	610	N/A	800	800	100	None
GWP (100yr)	NA	<25	<25	<25	<25	1	<25	<25	<25	1
ODP	0	0	0	0	0	0	0	0	0	0
Source: TEAP Report, 2006										

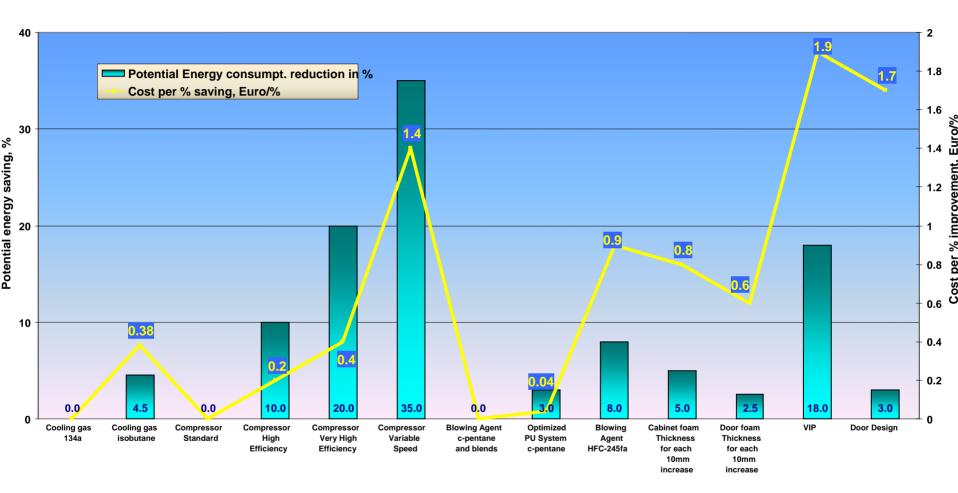

Closed cell : Thermal conductivity contribution factors

Developments are focused on BI. Agent and Radiative factor with cell size reduction


Challenges of HCFC Replacement > Advances in Rigid Foam Technology for Appliances

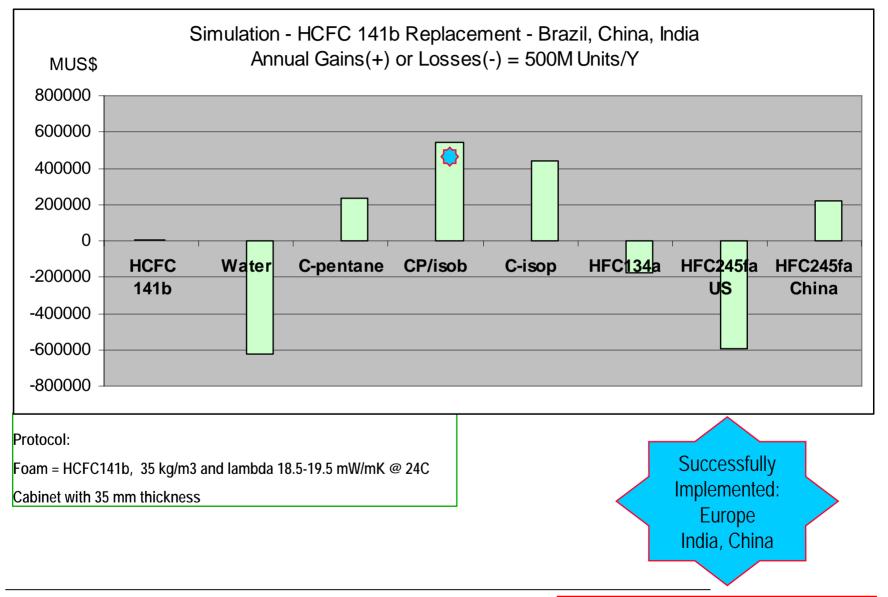
Challenges of HCFC Replacement > Advances in Rigid Foam Technology for Applizates


Challenges of HCFC Replacement > Advances in Rigid Foam Technology for Appliances


- General rule is: 10 micron reduction in cell size yields 0.001 btu improvement in foam k-factor
- Target needs to be approaching 100 microns hoping to get a k-factor near 0.120 btu
- Maybe as large as 140 micron cells size if consider 100% HFC-245fa
- Issues: Density, Cost, Processing !

Challenges of HCFC Replacement - Advances in Rigid Foam Technology for Appliances

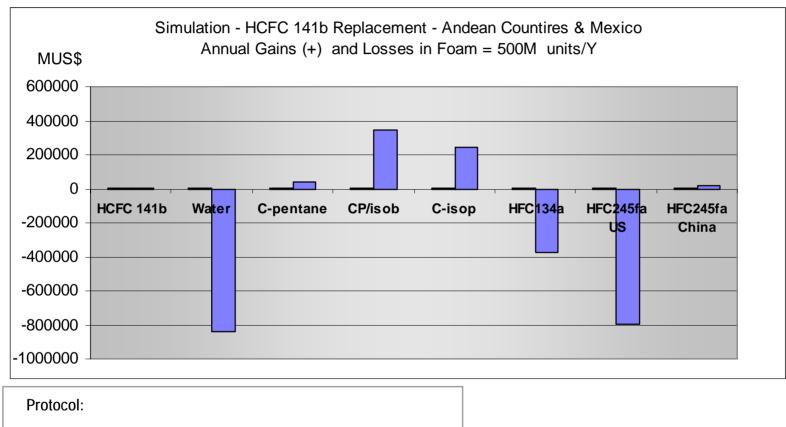
Insufactor - Microsoft Internet Explore Elle Edit View Favorites Iools Help Back • • • • • • • Address Image: http://txnt88/insufactor/Default.asp •	🛧 Favorites 🤣 😥 - 🏝 🗟 🖾	Modeling Simulation
Temperature 298.150 Kelvin Foam Density 35 Kg/m3	K Factor 17.457 Polymer 4.868 (mW/mK) Cell Gas 9.449	
Average Cell Size 250 Microns Gas Set A 1 Mole Fra	Download Data 40 -	
Gases in sets A/B Gas rel. moles R-141b (C2H3CI: • 0.5 Add CO2 • 0.5	in set A · · · B · · · · · · · · · · · · · · · · · · ·	
Add CO2	Cell Press	340 350
Add CO2 V	Temperature (Kelvin)	Gas
Add CO2 CO2 Control CO2 Control Contr	⊙ Temperature ○ Foam Density ○ Cell Size ○ mole f. A	O mole f. B
Slide 10 of 40	100%) @	 ・ ・



Challenges of HCFC Replacement - Energy Improvement - Options and Cost

Challenges of HCFC Replacement-Simulation of Cabinet Costs

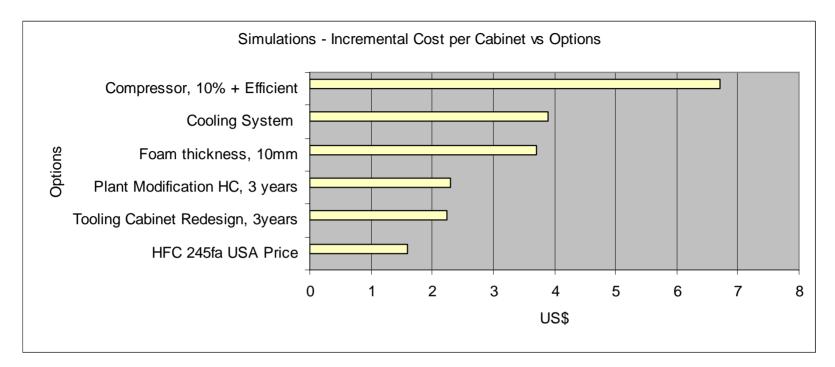
Spreasheet for Foam F	ormulation C	omparison - B	lowing Agent	t Options	Simulation for Bra	azil, China and	India		
BA Costs indicated are only for calculation and	d do not refle	ct exactly the	market prices	(Ckeck prices loo	cally - It could c	hange drasti	cally your ana	lysis)	
,									
Blowing Agent Options	HCFC 141b	H2O	Cycl. Pent	Combination	Combination	HFC 134fa	HFC 245fa	HFC 245fa	į,
				of BI. Angent	of bl.agent		USA	China	E
	Reference			CP/isoB (80/20)	CP/IsoP(75/25)				
Lambda 18.5 - 19.5 mW/mK Foam thickness, mm	35								
Raw Material Cost								•	
Polyol Cost, US\$/kg	2.5	2.6	2.6	2.6	2.5	2.6	2.6	2.6	Г
Blowing Agent cost US\$/kg	3.3	0.01	2.7	2.5	2.60	7	8.5	4.5	1
MDI Cost, US\$/kg	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
Foam Cost per Fridge									1
Foam Molded Density, kg/m3	35	40	34.5	33	34	32	32	32	Г
Volume to be filled, liters	150	150	150	150	150	150	150	150	
,,,,									
Foam Weight per cabine, g	5250	6000	5175	4950	5100	4800	4800	4800	
Foam Formulation									
	100	100	100	100	100	100	100	100	-
Polyol Plawing Agent	35	5	14.5	14.5	14.5	22	25	30	
Blowing Agent MDI	140	160	14.5	14.5	14.0	138	144	144	⊢
Total	275	265	258.5	249.5	258.5	260	269	274	
Total	215	203	230.3	243.J	230.3	200	203	214	
Cost per Foam component, per cabinet									
Polyol	4.77	5.89	5.21	5.16	4.93	4.80	4.64	4.55	Γ
Blowing Agent	2.21	0.00	0.78	0.72	0.74	2.84	3.79	2.36	
MDI	6.68	9.06	7.21	6.70	7.10	6.37	6.42	6.31	
Total Cost of Foam per cabinet, US\$	13.66	14.94	13.20	12.57	12.78	14.01	14.86	13.23	
Cost differences compared to Reference		-1.28	0.46	1.09	0.88	-0.35	-1.20	0.43	
Units produced per year Model X	500000	500000	500000	500000	500000	500000	500000	500000	
Cost Saving (+) or Losses (-), US\$ per year		-642491.42	231897.97	543074.33	440469.05	-176381.12	-597736.57	216634.04	
Lengend:									
n Red: input the values									
In black: the spreadsheet calculates									
n Green: Use HCFC 141b as Reference									
For Cabinet Re-design increase volume for mo	dified cabine	ts							



Challenges of HCFC Replacement-Simulation of Cabinet Costs

3A Costs indicated are only for calculation and	l do not refle	ct exactly the m	arket prices (Ckeck prices loca	lly - It could cha	inge drastically	your analysis)	
Blowing Agent Options	HCFC 141b Reference	H2O	Cycl. Pent	Combination of Bl. Angent CP/isoB (80/20)	Combination of bl.agent CP/IsoP(75/25)	HFC 134fa	HFC 245fa USA	HFC 245fa China	is Bi
ambda 18.0 - 19.0 mW/mK Foam thickness, mm	35			/					
Raw Material Cost									
Polyol Cost, US\$/kg	2.5	2.6	2.6	2.6	2.5	2.6	2.6	2.6	
Blowing Agent cost US\$/kg	3.3	0.01	2.7	2.5	2.60	7	8.5	4.5	1
MDI Cost, US\$/kg	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	
Foam Cost per Fridge	I		11					I	-
Foam Molded Density, kg/m3	34	40	34.5	33	34	32	32	32	
Volume to be filled, liters	150	150	150	150	150	150	150	150	
Foam Weight per cabine, g	5100	6000	5175	4950	5100	4800	4800	4800	
Foam Formulation									
Polyol	100	100	100	100	100	100	100	100	
Blowing Agent	35	5	14.5	14.5	14.5	22	25	30	\vdash
MDI	140	160	144	135	144	138	144	144	\vdash
Total	275	265	258.5	249.5	258.5	260	269	274	
Cost per Foam component, per cabinet				1					-
Polyol	4.64	5.89	5.21	5.16	4.93	4.80	4.64	4.55	
Blowing Agent	2.14	0.00	0.78	0.72	0.74	2.84	3.79	2.36	
MDI	6.49	9.06	7.21	6.70	7.10	6.37	6.42	6.31	-
Total Cost of Foam per cabinet, US\$	13.27	14.94	13.20	12.57	12.78	14.01	14.86	13.23	
Cost differences compared to Reference		-1.68	0.07	0.70	0.49	-0.74	-1.59	0.04	
Jnits produced per year Model X	500000	500000	500000	500000	500000	500000	500000	500000	
Cost Saving (+) or Leaser (-) 100 services		007607 70	26764.04	247027.07	245222.00	274547.40	700070.00	24.407.00	
Cost Saving (+) or Losses (-), US\$ per year Lengend:		-837627.79	36761.61	347937.97	245332.69	-371517.48	-792872.93	21497.68	

In black: the spreadsheet calculates In Green: Use HCFC 141b as Reference


For Cabinet Re-design increase volume for modified cabinets Montreal, April 5-6, 2008

Foam = HCFC141b, <u>34 kg/m3</u> and lambda 18.0-19.0 mW/mK @ 24C

Cabinet with 35 mm thickness

Challenges of HCFC Replacement- Simulation – Incremental Cost per Cabinet vs Options

Additional Cost per cabinet - 500M Units/Y		
Additional for Cabinet Re-Design		
Tool PU Mold Plug = 75M US\$ each	20	1500000
Tool PU Mold Doors = 75M US\$ each	10	1500000
Tool Plastic Liner Thermoform = 100M each	2	200000
Tool Plastic Door small & Big Thermoform = 80M each	2	160000
Total		3360000

Conclusion

* HCFCs Elimination is a Very Difficult Task Apart From all Technology Advances

* HCFC Elimination by HFC 24fa – Favorable for Energy Efficiency, Non Flammable, High Cost, High GWP

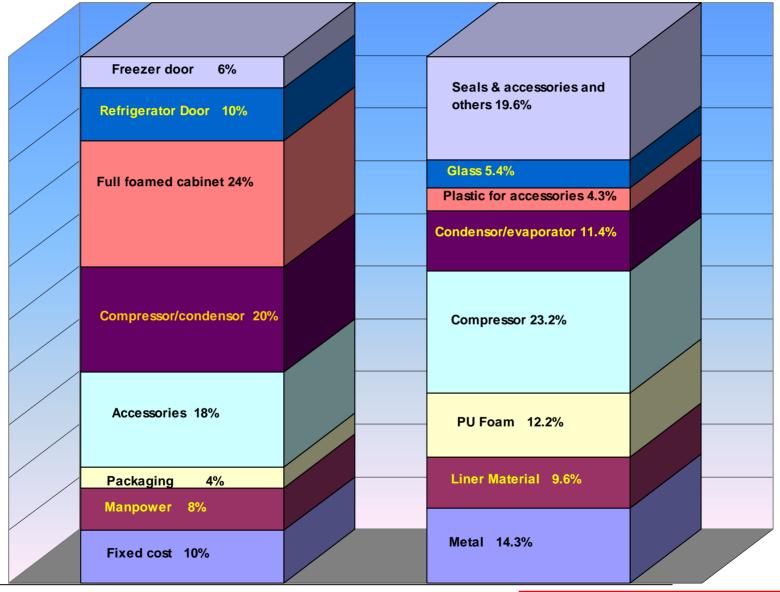
Additional costs - Predominantly in Cabinets - Less in Machinery & Processing Cost in cabinets - Remain until the cabinet model is produced, limited payback Investment - Low in Machinery, High in Raw Material (High cost of Blowing Agent)

 * HCFC Elimination by Hydrocarbons – Favorable to the Environment, Medium for Energy, Very Low GWP Additional costs - Predominantly in Machinery & Plant Processing

 Less in Cabinets
 Cost in cabinets – Depending on the re-design
 High in Machinery & Plant Processing with Payback,
 Low in Raw Material (Low cost of Blowing Agent)

* Other Options – To be evaluated case by case

Blends of HC/HCFC can be an option for China where HFC245fa has lower price Higher water blown content with other blowing agents will depend on applied molded density and Energy Efficiency requirements


•Modeling, Simulations and Formulation Science are great help for BI. Agent comparison before final decision is taken

Back Up - Slides

Paulo Altoe – Dow Brazil

April 2008

Challenges of HCFC Replacement - Energy Improvement - Options and Cost

Montreal, April 5-6, 2008

** excludes Manpower and fixed costs

Conversion Cost to Hydrocarbons	US\$
Storage	100000
Ventilation	80000
Safety Control - Cabinets	35000
White Book	22000
Safety Report	15000
Pre-Mix Polyol + Hydrocarbon	150000
PU Machine + Mixing Head	300000
Civil Construction	
Engineering	
Man Power	
Total	702000

