Post-2012 Emission Reduction Targets

What constitutes a fair level of effort for individual Parties?

Ben Gleisner: ben.gleisner@treasury.govt.nz

Overview

- Concept of equity within the UNFCCC and Kyoto
- International approaches used to determine post-2012 targets
 - Methodology/criteria
 - Results
 - Strengths and weaknesses
- Integrating various elements into a conceptual framework to 'Assess Comparable Effort' (ACE)
- Generating results in an interactive model 'Assessing Comparable Effort – Interactive Support Tool' (ACE-IST)

UNFCCC and the Kyoto Protocol

- Article 3.1 of the UNFCCC states action should be taken..... 'on the basis of equity and in accordance with their common but differentiated responsibility and respective capability'
- Current Kyoto targets range from -8% to +8% compared to 1990
- Bali Action Plan includes reference that mitigation efforts need to be made while 'ensuring comparability of effort'
- European Commission also have agreed to targets 'provided that other developed countries commit themselves to comparable emission reductions'

International Approaches

- 1) European Commission
- 2) The Japanese Government
- 3) Netherlands Environmental Assessment Agency
- 4) International Institute for Applied Systems Analysis

The EU has proposed a 30% reduction target by 2020 compared to 1990 for Annex 1 as a whole

The EU is willing to take on a reduction target of 30% if the future international agreement is sufficiently ambitious

Four indicators used as criteria to assess comparability:

- Income (GDP/Capita, 2005) Efficiency (GHG/GDP, 2005)
- Population trends (1990 2005)
- Past efforts (1990 2005 growth in gross emissions)

**** Source: UN population data

*** Source: Data database UNFCCC website

Targets – results from equal weighting of each criteria

	Share according to GDP/cap	Share according to GHG/GDP	Share according to GHG '90-'05	Share according to Population '90-'05	Target relative to 2005	Target relative to 1990
	(a)	(b)	(c)	(d)	(e) = $(a+b+c+d)$	
EU27	-10.2%	-10.1%	-5.2%	1.7%	-24%	-30%
Australia	-12.6%	-16.7%	-20.0%	10.0%	-39%	-24% ³⁸
Canada	-12.6%	-14.6%	-19.3%	7.8%	-39%	-23%
Iceland	-17.3%	-4.9%	-14.0%	7.6%	-29%	-21%
Japan	-12.8%	-5.6%	-12.5%	1.7%	-29%	-24%
New Zealand	-9.6%	-12.8%	-19.3%	9.8%	-32%	-15%
Norway	-20.0%	-4.7%	-13.3%	3.9%	-34%	-28%
Russia	-1.4%	-20.0%	8.0%	0.8%	-13%	-38%
Switzerland	-16.5%	-4.0%	-10.7%	3.4%	-28%	-27%
Ukraine	0.0%	-20.0%	8.0%	0.0%	-12%	-60%
USA	-14.3%	-12.3%	-15.9%	8.2%	-34%	-24%

European Commission Proposal

Strengths of approach

- •Simple uses currently available data
- Equitable attempts to factor in a range of different criteria

Weaknesses of approach

- No rationale for weighting chosen within and between criteria
- Past efforts should be relative to Kyoto Target
- 'Mitigation potential ('efficiency') not well captured with GHG/GDP' [OECD]
- •Costs of meeting targets are varied and could be perceived as unequitable

European Commission Proposal

Economic implications of meeting the 2020 target

Change compared to baseline	Target vs 2005	Economic Welfare	GDP	Employment	Private Consumption
EU27	-24%	-1.4%	-1.2%	-0.4%	-1.8%
USA	-34%	-0.7%	-0.8%	-0.4%	-1.2%
Japan	-29%	-0.6%	-0.6%	-0.3%	-1.0%
Canada	-39%	-2.2%	-2.0%	-0.7%	-3.4%
Australia & New Zealand	-38%	-1.9%	-2.0%	-0.8%	-3.2%
Other OECD Europe	-30%	-1.5%	-1.0%	-0.1%	-2.0%
Commonwealth of Independent	-12%	-1.4%	-3.0%	-1.5%	-3.4%
States					
Average Developed Countries	-27%	-1.0%	-1.0%	-0.6%	-1.5%

OECD/IEA

Two composite indices using indicators

Composite Index 1:

- Emissions per capita
- Mitigation potential
- GDP per capita

Composite Index 2:

- Emissions per capita
- Mitigation potential
- GDP per capita
- Mitigation costs (% GDP costs)

Japanese Government's proposal

Japanese Government's proposal

Targets should be based on:

- 1)Sectoral mitigation potential (efficiency indices)
 - Residential and Commercial
 - Power generation
 - Transport
 - Industry Steel, Aluminium and Cement
- 2)An assessment of total costs of meeting target as % of GDP using marginal abatement cost curves

Japanese Government's proposal

Strengths of approach

- Acknowledges that costs are a key part of an assessment of what is fair
- Uses sectoral-based analysis to determine potential (not GHG/GDP)

Weaknesses of approach

- Only takes into consideration 'cost' as a basis for equity
- Data to compare sectoral efficiencies may be difficult to find
- •Do not propose how sectoral efficiencies could be used/compared against aggregate costs/MACCs

Two conceptual approaches for "comparable efforts":

- 1. Equal effort: based on country's sharing the effort or burden according to a defined indicator.
 - Efforts are needed to change the current state or to change a likely baseline or reference development
 - For example, equal reduction below BAU, equal MAC and equal costs as %-GDP
- 2. Equal endpoint: the countries' effort is based on achieving the "same state in the future"
 - For example, equal emissions intensity per sector, or per capita emissions, Triptych.

Results for countries are relatively similar under each approach

The results change for some countries using different models

Strengths of approach

- Uses a range of different criteria
- Uses sensitivity analysis to show how different models change results
- •Generates a set of (relatively) independent results

Weaknesses of approach

- Only uses 2 models in their sensitivity analysis
- No transparency of underlying data
- •Does not integrate criteria i.e. only cost, or only GHG/capita
- Does not provide results for smaller countries like New Zealand

Large independent modelling exercise

Post-2012 targets (2020) for Annex 1 Parties are based on the costs of meeting the target, as a % of GDP

The primary inputs to this model are:

- Baseline projections in 2020
- Marginal abatement costs in 2020
- GDP projections in 2020

Baseline projections out to 2020

Mitigation costs in 2020

Using the total cost of abatement define targets as % of GDP

Strengths of approach

- Data is publicly available
- •Measures the cost of meeting targets a key factor in assessing equity
- Requesting from Parties more accurate data

Weaknesses of approach

- Focuses only on costs
- •Underlying MACC data has been questioned, in some cases

Vithin the negotiations there is a need for a framework within which effort can be measured

The concept of effort being measured in terms of the costs faced by a country in meeting a specific target is widely accepted

However, other criteria also need to be integrated, to ensure compatibility with Article 3 of the Convention.

nitial presentation on this framework in Poznan (see UNFCCC)

- The ACE framework uses a simple three step process to assess the comparability of individual countries' targets:
-) Develops a 2020 baseline/reference scenario for emissions
- 2) Estimates the costs of reducing emissions below this baseline
- 3) Integrates relative wealth/responsibility indicators

Estimating the costs faced by a country

- The cost that a country will face in meeting a target is a function of:
 - 1. BAU emission projections during the commitment period
 - Population/GDP growth
 - Emission intensity
 - 2. Cost of reducing emissions below BAU
 - Structure of the economy domestic emission profile and sectoral mitigation potential – "domestic MAC"

1. Where are the countries BAU emissions in 2020?

Where are the countries BAU emissions in 2020?

Country A +30 % of 1990

Country B +15% of 1990

Where are the countries BAU emissions in 2020?
 Country A +30 % of 1990 Country B +15% of 1990

2. What are the costs of meeting the target?

- Where are the countries BAU emissions in 2020?
 Country A +30 % of 1990 Country B +15% of 1990
- 2. What are the costs of meeting the target? a) How many reductions are required?

1. Where are the countries BAU emissions in 2020?

Country A +30 % of 1990 Country B +15% of 1990

- 2. What are the costs of meeting the target?
 - a) How many reductions are required?

Country A 18MT

Country B

16MT

1. Where are the countries BAU emissions in 2020?

Country A +30 % of 1990 Country B +15% of 1990

2. What are the costs of meeting the target?

a) How many reductions are required?

Country A 18MT Country B 16MT

b) How much does it cost to reduce these emissions?

1. Where are the countries BAU emissions in 2020?

Country A +30 % of 1990 Country B +15% of 1990

- 2. What are the costs of meeting the target?
 - a) How many reductions are required?

Country A 18MT Country B 16MT

b) How much does it cost to reduce these emissions?

Country A \$800m

Country B \$400m

1. Where are the countries BAU emissions in 2020?

Country A +30 % of 1990 Country B +15% of 1990

- 2. What are the costs of meeting the target?
 - a) How many reductions are required?

Country A 18MT

Country B 16MT

b) How much does it cost to reduce these emissions?

Country A \$800m **GDP \$500b**

Country B \$400m

GDP \$500b

1. Where are the countries BAU emissions in 2020?

Country A +30 % of 1990 Country B +15% of 1990

- 2. What are the costs of meeting the target?
 - a) How many reductions are required?

Country A 18MT

Country B 16MT

b) How much does it cost to reduce these emissions?

Country A \$800m

GDP \$500b 0.16% of GDP GDP \$500b 0.08% of GDP

Country B \$400m

1. Where are the countries BAU emissions in 2020?

Country A +30 % of 1990 Country B +15% of 1990

- What are the costs of meeting the target?
 - a) How many reductions are required?

Country A

? MT

Country B

16MT

b) How much does it cost to reduce these emissions?

Country A GDP \$500b

\$400m 0.08% of GDP

Country B \$400m

GDP \$500b 0.08% of GDP

1. Where are the countries BAU emissions in 2020?

Country A +30 % of 1990 Country B +15% of 1990

- What are the costs of meeting the target?
 - a) How many reductions are required?

Country A

12MT

Country B

16MT

b) How much does it cost to reduce these emissions?

Country A GDP \$500b

\$400m 0.08% of GDP

Country B \$400m

GDP \$500b 0.08% of GDP

Equal areas = Equal total costs

Where are the countries BAU emissions in 2020?

Country A +30 % of 1990

Country B +15% of 1990

- What are the costs of meeting the target?
 - a) How many reductions are required?

Country A

12MT

Country B

16MT

b) How much does it cost to reduce these emissions?

Country A \$400m

GDP \$500b 0.08% of GDP

Country B \$400m

GDP \$500b 0.08% of GDP

Where are the countries BAU emissions in 2020?

Country A +30 % of 1990

Country B +15% of 1990

- What are the costs of meeting the target?
 - a) How many reductions are required?

Country A

? MT

Country B

16MT

b) How much does it cost to reduce these emissions?

Country A \$1200m

GDP \$1500b 0.08% of GDP

Country B \$400m

GDP \$500b 0.08% of GDP

1. Where are the countries BAU emissions in 2020?

Country A +30 % of 1990 Country B +15% of 1990

- What are the costs of meeting the target?
 - a) How many reductions are required?

Country A 24 MT

Country B

16MT

b) How much does it cost to reduce these emissions?

Country A \$1200m

GDP \$1500b 0.08% of GDP

Country B \$400m

GDP \$500b 0.08% of GDP

Equal areas = Equal total costs

Sharing the costs equally between countries is a useful start

However, CBDR&RC has a broader meaning of equity

GDP/capita could be taken into account – it is widely agreed that those with higher incomes should pay a relatively greater share

GHG/capita - correlated with GDP/capita, but with an emissions focus ensures responsibility for reducing *emissions* is explicit

Integrating the equity criteria of GDP/capita and GHG/capita

3: Equity Variance

Conclusions

Conclusions

1) Baseline emissions, relative to the base year, are a key input into determining a fair target: higher population and economic growth = less reductions relative to base year

Conclusions

- 1) Baseline emissions, relative to the base year, are a key input into determining a fair target: higher population and economic growth = less reductions relative to base year
- 2) The structure of an economy and domestic emissions profile are also important: *more efficient* = *less reductions*

Conclusions

- 1) Baseline emissions, relative to the base year, are a key input into determining a fair target: higher population and economic growth = less reductions relative to base year
- 2) The structure of an economy and domestic emissions profile are also important: *more efficient* = *less reductions*
- 3) Capability and responsibility need to also be taken into account: *higher GHG or GDP/capita = more reductions*

Assessing Comparable Effort Interactive Support Tool (ACE – IST)

Assessing Comparable Effort - Interactive Support Tool (ACE-IST)

PARTY		2020 Target	percapita	% GDP	2015 Target
A	Fix	-10%	-30%	-0.54%	-0%
В	Fix	22%	-11%	-0.51%	22%
С	Fix	33%	-9%	-0.07%	31%
D	□Fix	45%	-4%	-0.03%	39%
E	□Fix	-48%	-38%	-0.55%	-37%
F	□Fix	-32%	-24%	-0.52%	-26%
G.	□Fix	-27%	-23%	-0.14%	-21%
Н	□Fix	-9%	-10%	-0.10%	-9%
	□Fix	-61%	-32%	-0.04%	-57%
	□Fix	-57%	-10%	-0.01%	-56%
TOTAL		-25%	1070	5.5176	-20%

ACE-IST: Baseline

ACE-IST: Marginal Abatement Cost Curves

ACE-IST: Total Abatement Cost relative to GDP

ACE-IST: Results

PARTY		2020 Target	percapita	% GDP	2015 Target
Α	Fix	-10%	-30%	-0.54%	-0%
В	Fix	22%	-11%	-0.51%	22%
С	Fix	33%	-9%	-0.07%	31%
D	Fix	45%	-4%	-0.03%	39%
Е	Fix	-48%	-38%	-0.55%	-37%
F	Fix	-32%	-24%	-0.52%	-26%
G	□Fix	-27%	-23%	-0.14%	-21%
Н	Fix	-9%	-10%	-0.10%	-9%
I	Fix	-61%	-32%	-0.04%	-57%
J	Fix	-57%	-10%	-0.01%	-56%
TOTAL		-25%			-20%

ACE-IST: Results

ACE-IST: Next Steps

Plan to present results from ACE-IST in June

Welcome any data on:

- i) 2020 baseline projections for <u>all</u> countries
- ii) 2020 MACCs for all countries
- iii) 2020 GDP and population projections for all countries

Please send this data to:

ben.gleisner@treasury.govt.nz steven.cox@maf.govt.nz amelie.goldberg@mfe.govt.nz daniel.twaddle@mfe.govt.nz

ACE-IST

Thank you

