

Carbon capture & Storage: what it is and why we need it

Stakeholder Consultation Meeting 8 May 2007

Scott Brockett
C5 Energy & Environment
European Commission
DG Environment

Gasification or

Partial Oxidation

CCS Chain of Processes

Explicitly excludes ocean storage

uropean Commission: DG Environment Slide courtesy of Karin Ritter, IPIECA

Depleted Reservoir

Why do we need CCS?

Climate change context

- Cannot reduce EU or world CO2 emissions by 50% in 2050 with energy efficiency and renewables alone
- Must also use the possibility to capture and store CO2
- Major fossil fuel use in the developing world must be addressed.

Potential of CCS

- Could contribute around 14% of all reductions needed by 2030
- by 2050 almost 60% of emissions from the power sector should be captured, compared with none today. More than 90% of all coal-fired electricity generation would be from plants equipped with CCS.
- After initial deployment in developed countries, rapid uptake in developing countries will follow.

CO₂ captured or injected vs. avoided or reduced

Potential for long-term storage

- Most oil and gas fields have contained high-pressure CO2 for millions of years (200 Mt trapped in Pisgah Anticline in the US for 65M years)
- Significant storage potential
 - Technical potential likely to exceed 2000 GT
 - Total CO2 emissions currently around 24 GT/yr
- Detailed work on storage potential in Europe:
 - National geological surveys
 - Geocapacity FP6 project

Contribution of physical and chemical trapping options over time

Time since injection stops (years)

Source: IPCC

Locations of CO₂ storage activities

Risks of CCS

Estimates in IPCC Special report:

- Local risks associated with pipeline transport could be similar to or lower than those of current hydrocarbon pipelines
- With appropriate site selection, monitoring and remediation, the local risks of CCS would be comparable to those of natural gas and Enhanced Oil Recovery
- The fraction retained in appropriately selected and managed sites is very likely to exceed 99% over 100 years, and likely to exceed 99% over 1000 years.

Need to balance risks and benefits

How can its potential be achieved?

Requirements

- Manage risks of CCS
- Commercialise the technology bring costs down substantially

Actions

- Enabling legal framework end 2007
- 10-12 demonstration plants.
- Widespread deployment by 2020

Summary

- Can't meet our climate goals without CCS
- Technology for deployment exists today
- Significant storage capacity both worldwide and in Europe
- If sites properly managed, prospects for long-term storage are good
- Regulatory framework needed:
 - O Risk management
 - Demonstration/commercialisation
- Widespread deployment by 2020