

Energy research Centre of the Netherlands

Incentivising CCS in the EU

Heleen de Coninck & Heleen Groenenberg Stakeholder meeting DG ENV – May 8th 2007

Appropriate policy for innovation phase?

EU Emissions Trading Scheme

- Cost-effective instrument, if strong incentive given
- However, if EUA prices remain low:
 - Preference for low-cost abatement options
 - Innovation market failure
 - ETS unlikely to lead to CCS deployment
 - \rightarrow Need for complementary policies

Complementary policies

- Public financial support (most likely MS level)
 - Investment support
 - Feed-in subsidies
 - CO₂ price guarantee
- Low-carbon portfolio standard with tradable certificates (most likely EU level)
- CCS obligation (EU level)
- (Public-private partnerships)

Investment support

- Early demonstrations, pipeline network
- Most likely MS level, any sector
- Environmentally effective
- Reduction of financial uncertainty for operator
- Government has influence on investment decisions
- Possibly high costs
- Poor incentive for further innovation or cost reduction

Feed-in subsidies

- Widely applied to promote renewables towards commercialisation
- Most likely MS level, usually power sector
- Environmentally effective
- Reduction of financial uncertainty for operator
- Poor incentive for further innovation or cost reduction
- Risk of overshooting target and high costs

CO₂ price guarantee

- Buy CCS-generated EUAs at fixed price (high enough to set of CCS)
- Most likely MS level, any sector
- Environmentally effective
- Reduction of financial and CO₂ market uncertainty for operator
- Poor incentive for further innovation or cost reduction

Low-carbon portfolio standard

- Source minimum % of power from specified sources
- May be combined with tradable certificates
- Applied for renewables in some MS and US States
- EU level, power sector
- Environmentally effective if target is strong
- Incentive for further innovation and cost reduction
- Risk for operator (technological, financial, and availability of storage)
- Complex and administratively challenging

CCS obligation (2020 \rightarrow)

- Also e.g. retrofit (2020-2040), capture ready (2012 \rightarrow)
- Targeted sector: power and/or other point sources
- EU level, any sector (but likely power sector)
- Environmentally effective
- Strong incentive for further innovation and cost reduction
- Easy to monitor and determine compliance
- Risk for operator (technological, financial availability of storage)

Public private partnerships

- Not enabling full CCS,
- Potentially useful for realising pipeline
 infrastructure
 - if there are efficiency gains on supra-MS scale
 - if it is beyond interest individual industries or projects
- Possible analogues to Trans-European Energy Networks

Interaction additional incentives ↔ ETS

Interaction additional incentives ↔ ETS (ctd)

- MS incentives small scope; less market impact
- Any additional instrument will reduce demand for EUAs and lower CO₂ market price unless cap is lowered accordingly

→ Lower cap in MS

→ New entrants: no allowances

Other interactions

Renewable energy:

Diversion of resources + attention

 \rightarrow % renewables contingent on CCS implemented

Innovation:

Cost reduction discouraged

 \rightarrow Portfolio standard, obligation

Electricity market:

Technical reasons for placing CCS as baseload option,

however O&M cost lead to higher electricity price

Security of energy supply:

CCS only contributes if gas prices spur a shift to coal, and CO_2 prices are high enough for CCS

Impact CCS \rightarrow security of supply

Timing of policies

Timing of policies

	Demonstration	Up-scaling	Commercialisation	
	2010-2020	2015-2030	2025-2040	
ETS (weak)	Yes	Yes	Yes	
ETS (strong)	Yes	Yes	Yes	
Investment support	Yes	No	No	
Feed-in subsidy	Yes	Yes	No	
CO ₂ price guarantee	Yes	Yes	No	
Portfolio + certificates	No	Yes	Yes	
Obligation	No	Yes	Yes	

Multi-criteria analysis

	Effectiveness	Risk + cost burden	Consistency	Feasibility (NGO view)
ETS (weak)	-	0	+	+
ETS (strong)	+	+	+	+/-
Investment support	+	-	0	-
Feed-in subsidy	+	-	0	-
CO ₂ price guarantee	+	-	0	-
Portfolio + certificates	+	+	0/-	+/-
Obligation	+	+	0/-	+

Conclusions

- ETS cost-effective incentive for CO₂ reduction, however market failures and low prices may hinder CCS deployment
- Additional incentives needed to advance large-scale CCS deployment
- MS policies may tend to divert resources from renewables, place financial risk with national governments and do not provide incentives for innovation
- EU-wide structural policies preferable, possibly complemented by MS policies in demonstration phase
- Revision of State Aid rules required
- Interaction with ETS requires cap adjustment

Remaining questions

- What is the most efficient way of building CO₂transport infrastructure in the EU?
- Where would an obligation leave EU countries without much CO₂ storage potential?
- How would companies deal with costs of obligation – transfer to consumers, or pay?
- Is it technically possible to have peak-load CCS only?
- Can a CCS-proof renewables policy be designed?

Thank you

Heleen de Coninck: deconinck@ecn.nl Heleen Groenenberg: groenenberg@ecn.nl

Energy research Centre of the Netherlands

www.ecn.nl