Cost curves for HDVs

Establishing marginal abatement cost curves for Heavy Duty Vehicles for packages of technical measures

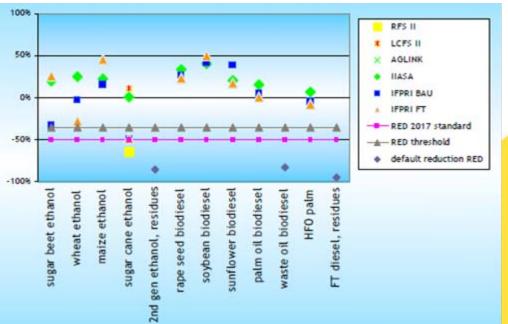
Overview presentation

- Objective of the project
- Scope of the project
- Methodology
- Input values
- MACH model
- Output
- Conclusions

Objective of the project

- Derive marginal abatement cost (MAC) curves, at the vehicle level, for packages of technical CO₂ reduction options for HDVs
- Since MAC curves depends heavily on parameter/variable values applied, the MACH model has been developed which provides users the opportunity to adjust the values of some of the parameters/variables themselves.

Scope of the project (1)


• MAC curves are derived for the following vehicle categories:

- Service/delivery (< 7.5 ton)
- Urban delivery/collection
- Municipal utility
- Regional delivery/collection
- Long haul
- Construction
- Bus
- Coach
- Additionally 'average' MAC curves for trucks and busses are developed

Scope of the project (2)

- Only technical CO₂ reduction measures are considered
- Biofuels are not taken into account since:
 - Taking ILUC effects into account many biofuels may not result in an reduction of GHG emissions
 - •Biofuels actually reducing GHG emissions are expensive and hence will show up at the right side of the cost curve.

Methodology

Methodology consists of three steps:

- 1. Estimate cost effectiveness of all individual abatement technologies
 - Based on total costs and benefits over lifetime technology

- Cost effectiveness = $\frac{I - NPV (\Delta lifetime fuel costs)}{Lifetime CO2 emission reduction}$

2. Rank all abatement technologies based on their cost effectiveness

- 3. Estimate combined reduction potential of abatement technologies
 - Combined reduction potential (%) =

$$100 \times (1 - (1 - \frac{RP1}{100}) \times (1 - \frac{RP2}{100}) \times ... \times (1 - \frac{RPi}{100}))$$

Average MAC curves:

- In general same approach
- But abatement potentials are weighted by shares in total CO₂ emissions of trucks and busses

Input values: methodology

- Desk research to establish a set of input data
- Two key studies on abatement technologies for HDVs
 - TIAX (2011) European Union Greenhouse Gas reduction Potential for Heavy-Duty Vehicles
 - AEA/Ricardo (2011) Reduction and Testing of Greenhouse Gas (GHG) Emissions from Heavy Duty Vehicles
- Attempt to explain the main differences between both studies:
 - Thorough review of both reports
 - Interviews with authors of these studies
 - Comparison to other studies on abatement technologies for HDVs

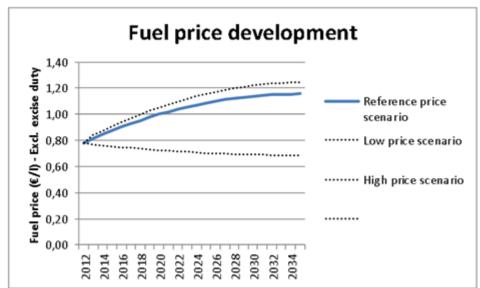
Input values: baseline

- Baseline vehicles
 - TIAX (2011): 2014 vehicles meeting Euro VI emission standards
- Other baseline assumptions

Vehicle segment	Vehicle lifetime	Annual mileage (kilometres)	Fuel consumption (I/100 km)
Service/delivery	10	35.000	16.0
Urban delivery/collection	19	40.000	21.0
Municipal utility	17	25.000	55.2
Regional delivery/collection	12	60.000	25.3
Long haul	8	130.000	30.6
Construction	19	50.000	26.8
Bus	14	50.000	36.0
Coach	12	52.000	27.7

Input values: technical measures

- Set of technical measures included the same as in TIAX (2011)
 - Aerodynamics
 - Lightweighting
 - Tires and wheels
 - Transmission and driveline
 - Engine efficiency
 - Hybridisation
 - Management
- Abatement potential based on TIAX (2011):
 - Depends heavily on baseline vehicles
 - Differences in abatement potential between TIAX and AEA/Ricardo are mainly due to differences in baseline vehicles. Remaining differences are rather small.


Input values: investment costs

- Investment costs: significant differences between TIAX and AEA/Ricardo due to:
 - Differences in baseline vehicles
 - Differences in specifications of technical measures
 - Differences due to uncertainties in cost estimates
 - Many of the AEA/Ricardo estimates fall within ranges defined by TIAX/NAS (2009)
- Input values for the model
 - Default values are based on TIAX (2011)
 - Ranges based on TIAX/NAS (2009) for most technologies
 - For some technologies upper/lower bounds are based on AEA/Ricardo (2011) or other studies

MACH model

- Marginal Abatement Cost curves for Heavy duty vehicles (MACH) model
- In the model the following parameters/variables could be adjusted to carry out sensitivity analyses:
 - Perspective applied: social and end-user perspective
 - Discount rate: ranges between 2-7% (social perspective) and 4-12% (end-user perspective)
 - Fuel prices: three scenarios and custom-made
 - Time horizon: between 3 years and vehicle's lifetime
 - Investment costs: ranges based on literature review

Output trucks (1)

Break-even abatement potential urban delivery trucks

	Time horizon: 3 years	Time horizon: measure's lifetime	
Social perspective			
Low fuel price scenario	3%	44%	
Reference fuel price	5%	44%	
scenario			
High fuel price scenario	5%	44%	
End-user perspective			
Low fuel price scenario	10%	44%	
Reference fuel price	10%	44%	
scenario			
High fuel price scenario	20%	44%	

Output trucks (2)

Break-even abatement potential long haul trucks

	Time horizon: 3 years	Time horizon: measure's lifetime	
Social perspective			
Low fuel price scenario	33%	36%	
Reference fuel price	33%	36%	
scenario			
High fuel price scenario	33%	36%	
End-user perspective			
Low fuel price scenario	33%	36%	
Reference fuel price	33%	36%	
scenario			
High fuel price scenario	33%	36%	

Output trucks (3)

Break-even abatement potential trucks (average)

	Time horizon: 3 years	Time horizon: measure's lifetime			
Social perspective					
Low fuel price scenario	20%	32%			
Reference fuel price	20%	33%			
scenario					
High fuel price scenario	20%	33%			
End-user perspective	End-user perspective				
Low fuel price scenario	24%	34%			
Reference fuel price	24%	34%			
scenario					
High fuel price scenario	24%	34%			

Output trucks: impact of discount rate

Break-even abatement potential for different discount rates (social perspective, long time horizon, reference fuel price)

Category	Discount rate: 2%	Discount rate: 4%	Discount rate: 7%
Service	13%	13%	13%
Urban delivery	44%	44%	44%
Municipal utility	36%	36%	17%
Regional delivery	33%	31%	31%
Long haul	36%	36%	36%
Construction	45%	45%	45%
Average	34%	33%	32%

Output busses (1)

Break-even abatement potential busses

	Time horizon: 3 years	Time horizon: measure's lifetime	
Social perspective			
Low fuel price scenario	13%	43%	
Reference fuel price	13%	43%	
scenario			
High fuel price scenario	13%	43%	
End-user perspective			
Low fuel price scenario	13%	43%	
Reference fuel price	43%	43%	
scenario			
High fuel price scenario	43%	43%	

Output busses (2)

Break-even abatement potential coaches

	Time horizon: 3 years	Time horizon: measure's lifetime	
Social perspective			
Low fuel price scenario	4%	25%	
Reference fuel price	4%	25%	
scenario			
High fuel price scenario	4%	25%	
End-user perspective			
Low fuel price scenario	10%	25%	
Reference fuel price	10%	25%	
scenario			
High fuel price scenario	10%	25%	

Output busses (3)

Break-even abatement potential busses (average)

	Time horizon: 3 years	Time horizon: measure's lifetime	
Social perspective	·		
Low fuel price scenario	9%	36%	
Reference fuel price	9%	36%	
scenario			
High fuel price scenario	9%	36%	
End-user perspective			
Low fuel price scenario	12%	36%	
Reference fuel price	30%	36%	
scenario			
High fuel price scenario	30%	36%	

Output busses: impact of discount rate

Break-even abatement potential for different discount rates (social perspective, long time horizon, reference fuel price)

Category	Discount rate: 2%	Discount rate: 4%	Discount rate: 7%
Bus	43	43	43
Coach	25	25	25
Average	36	36	36

Conclusions

- Both for trucks and busses a significant CO₂ abatement potential with zero or negative costs is available.
 - Trucks: ca. 33%
 - Busses: ca. 36%
- Significant differences between vehicle categories:
 - E.g. Service ca. 13% vs. Construction ca. 45%
- Results are rather robust, particularly with respect to the average curves
 - Impact of parameters like discount rate, perspective of the analysis, fuel price is limited

