

Assessment of options for the legislation of CO₂ emissions from light commercial vehicles

ENV.C.5/FRA/2006/0071

LCVs & CO₂ | Contents

- project team
- project context & history
- definitions
- database for light commercial vehicles
- update of cost curves
- definition of utility-based limit functions
- results of cost assessments
- considerations on perverse incentives
- conclusions

LCVs & CO₂ | Project team

CE Delft: Richard Smokers, Gerdien van de Vreede,

Femke Brouwer

Gerben Passier TNO:

AEA: Ian Skinner

work is part of larger project "Impacts of regulatory options to reduce CO₂ emissions from cars, in particular on car manufacturers", carried out by a consortium led by AEA with CE, TNO and Öko-Institut as partners

LCVs & CO₂ | Project context

- part of European Commission's plans as outlined in COM(2007) 19 and SEC(2007) 60
 - CO₂ legislation for LCVs as element in Integrated Approach to bridge 10 g/km gap between overall goal of 120 g/km and the M1 target of 130 g/km
 - objective of reaching 175 g/km CO₂ by 2012 and 160g/km CO₂ by 2015
- approach preferably similar to legislation for M1
- European Commission has requested assessment of following options:

target [g/km]	target year	target types	slope values	AMI assumptions
175	2012	utility-based limit function for mass and pan area percentage reduction	0 – 140% n.a.	0.0 – 1.5% p.a. 0.0 – 1.5% p.a.
175	2015	utility-based limit function for mass and pan area percentage reduction	0 – 140% n.a.	0.0 – 1.5% p.a. 0.0 – 1.5% p.a.
160	2015	utility-based limit function for mass and pan area percentage reduction	0 – 140% n.a.	0.0 – 1.5% p.a. 0.0 – 1.5% p.a.

LCVs & CO₂ | Project history

- IEEP/CE/TNO 2007: Service Contract on possible regulatory approaches to reducing CO₂ emissions from cars, DG Environment, contract nr. 070402/2006/452236/MAR/C3
- TNO/IEEP/LAT 2006: Service Contract to review and analyse the reduction potential and costs of technological and other measures to reduce CO₂ emissions from passenger cars, DG Enterprise, contract nr. SI2.408212
- **IEEP/TNO/CAIR 2004:** Service Contract on a business impact assessment of measures to reduce CO_2 emissions from passenger cars, DG Environment, contract nr. B4-3040/2003/366487/MAR/C2
- TNO/IEEP/LAT 2004: Service Contract on the policies for reducing CO₂ emissions from light commercial vehicles, DG Environment, B4-3040/2003/364181/MAR/C1.
- **IEEP/TNO/CAIR 2003:** Service Contract on the future of the passenger car CO₂ strategy, DG-Environment
- TNO cost assessment model has been developed, used and updated in above projects

LCVs & CO₂ | Definitions

- N1 vehicles are motor vehicles with at least four wheels designed and constructed for the carriage of goods and having a maximum mass not exceeding 3.5 tonnes
- Classes of N1 vehicles on the basis of reference mass:
 - Class I: reference mass ≤ 1305kg
 - Class II: 1305 kg < reference mass ≤ 1760 kg
 - Class III: reference mass > 1760 kg
- Regulation is intended to cover N1, N2 and M2 vehicles with reference mass not exceeding 2610 kg.
 - further extended to vehicles with reference mass up to 2840 kg of which other model variants are type approved as N1, N2 or M2 with reference mass below 2610 kg
 - harmonisation with scope of Euro 5/6 legislation

LCVs & CO₂ | Definitions

- Sales database contains kerb weight instead of reference mass
 - kerb weight is total weight of vehicle with standard equipment, all necessary operating consumables (such as motor oil and coolant), a full tank of fuel, and not loaded with either passengers or cargo.
 - definition of kerb weight not consistent
 - incl. or excl. 75 kg for driver?
 - approximate definitions used
 - reference mass = kerb weight + 60 kg
- Relation between additional manufacturer costs and additional retail price based on ACEA tax guide data

JATO has supplied two datasets:

- 2007 "Vols database"
 - vehicle registration data and limited technical information (but containing) CO₂ combined, kerb weight, payload, overall length, overall width, overall height, wheelbase, cargo volume, sales) for 20 European countries in 2007
- 2007 "Specs database"
 - extensive technical data for all vehicles registered in 20 countries in 2007 but no sales data (included in addition to the Vols database: base price, CO₂ and fuel consumption for urban, extra-urban and combined, front and rear track width, and cargo space dimensions).
 - For 9 countries JATO has established a coupling between the Vols and the Specs database so that for these countries the Specs database also contains sales volumes

- Filtering applied
 - all typical passenger cars (registered as van) removed
 - small vans (Berlingo / Kangoo / Doblo-type) assumed N1
 - large pick-ups assumed N1
 - all other SUVs assumed M1 and removed
 - campers considered M1 and removed
 - minibuses ≤ 9 seats considered M1 and removed
 - midibuses > 9 seats considered M2 and included
 - other fuels than petrol and diesel excluded
- All remaining vehicles labelled class I, II or III based on reference mass
- Missing CO₂ data estimated on basis of linear fit through available data on other vehicles in same model range
 - or average if number of available CO₂ data was limited
 - or based on fit through data on other vehicles in same class if no CO₂ data available for given model

- Multi-stage vehicles
 - chassis-cab combination fitted with build-up by "final stage manufacturer" after vehicle is sold to customer by OEM
 - can not be identified on basis of information in database
 - largest share expected in class II and class III
 - CO₂ emission data will generally be missing for 2007
 - when available, lower CO₂ emissions measured without build-up are partly compensated by lower mass
 - share in overall sales only 8%
- Uncertainties with respect to multi-stage vehicles are considered not to prohibit the definition of an appropriate limit function for the CO₂ legislation for LCVs
- Available CO₂ data in database are considered sufficient for defining correct fit through 2007 data

- Shares of petrol / diesel
 - Share of different fuels in N- and M-type vehicle sales in the JATO database

	N	М
petrol	2.1%	3.8%
diesel	96.7%	93.1%
CNG	0.5%	0.1%
other	0.7%	3.1%
total	100.0%	100.0%

 Share of different fuels and classes in sales of N-type vehicles according to [TNO 2004]

TNO 2004		petrol		diesel			
		П	Ш		П	III	
share of sales per class ¹	27.5%	33.0%	39.5%	27.5%	33.0%	39.5%	
share of sales per fuel ²	34.1%	34.1%	34.1%	65.9%	65.9%	65.9%	
share of sales per fuel per class	9.4%	11.3%	13.5%	18.1%	21.7%	26.0%	

¹⁾ based on data from Member State registration bodies and RAND 2002

²) based on TREMOVE

2007 averages and sales data

_	2007-da	2007-data								
	CO2	mass	pan area	sales						
manufacturer	[g/km]	[kg]	[m^2]							
	avg.	avg.	avg.	p,l	p,II	p,III	d,l	d,II	d,III	total
ACEA										
Daimler	243	2024	10.9	0	35	365	0	4623	151677	156700
Fiat	196	1770	9.9	6308	532	0	28401	75819	168481	279541
Ford	207	1748	9.7	147	376	962	2358	116737	114927	235507
GM	181	1592	8.6	1428	351	906	30483	45157	49920	128245
PSA	181	1539	8.6	6830	399	0	131167	66020	112850	317266
Renault	193	1595	8.8	5164	1597	278	87669	28367	110797	233872
Volkswagen	207	1793	9.4	747	3132	1093	1882	71094	112716	190664
JAMA										
Isuzu	230	1969	9.2	0	0	0	0	422	11127	11549
Mazda	246	1799	9.1	0	0	0	876	622	5225	6723
Mitsubishi	233	1946	9.2	0	0	0	460	137	34078	34675
Nissan	238	1932	9.6	363	65	119	4363	12604	64649	82163
Toyota	223	1868	9.3	0	0	0	51	6680	46508	53239
KAMA										
Hyundai	227	1897	9.0	0	96	0	0	1510	7448	9054
Other										
LDV	229	1919	10.9	0	0	0	0	13	7884	7897
total / average	203	1731	9.4	20987	6583	3723	287710	429805	998287	1747095
share		- 		1.2%	0.4%	0.2%	16.5%	24.6%	57.1%	

average CO₂ as function of mass, weights determined by sales

• average CO₂ as function of pan area (I x w), weights determined by sales

LCVs & CO₂ | Update of cost curves

- based on methodology and cost figures from [TNO 2006]
- CO₂ emissions of 2002 reference vehicles updated on basis of 2007 data
 - with assumed efficiency improvement between 2002 and 2007
- cost curves based on CO₂ reduction and costs of 5 packages
 - includes indicative correction factor for avoiding double counting of effect from measures that apply to same energy loss

$$CO_2^{combined} = correction _ factor \times CO_2^{baseline} \times \prod_{i=1}^{n} (1 - \delta_i)$$

LCVs & CO₂ | Definition of utility-based limit functions

methodology identical to M1 case

LCVs & CO₂ | Definition of utility-based limit functions

limit functions developed for:

- 175 g/km in 2012, with AMI = 0.0%, 0.82% and 1.5% p.a.
- 175 g/km in 2015, with AMI = 0.0%, 0.82% and 1.5% p.a.
- 160 g/km in 2015, with AMI = 0.0%, 0.82% and 1.5% p.a.

examples:

CO2(referen	ce mass)		ta	rget year	2012		
AMI	0.0	0%	0.8	2%	1.50%		
target	17	75	17	75	17	75	
slope	а	b	а	b	а	b	
2007 fit	0.1079	16.33	0.1079	16.33	0.1079	16.33	
160%	0.1488	-82.48	0.1433	-83.31	0.1389	-83.98	
140%	0.1302	-50.30	0.1254	-51.02	0.1215	-51.60	
120%	0.1116	-18.11	0.1075	-18.73	0.1042	-19.23	
100%	0.0930	14.07	0.0895	13.55	0.0868	13.14	
90%	0.0837	30.17	0.0806	29.70	0.0781	29.33	
80%	0.0744	46.26	0.0716	45.84	0.0694	45.51	
70%	0.0651	62.35	0.0627	61.99	0.0608	61.70	
60%	0.0558	78.44	0.0537	78.13	0.0521	77.88	
50%	0.0465	94.54	0.0448	94.28	0.0434	94.07	
40%	0.0372	110.63	0.0358	110.42	0.0347	110.26	
30%	0.0279	126.72	0.0269	126.57	0.0260	126.44	
20%	0.0186	142.81	0.0179	142.71	0.0174	142.63	
10%	0.0093	158.91	0.0090	158.86	0.0087	158.81	
0%	0.0000	175.00	0.0000	175.00	0.0000	175.00	

CO2(pan are	a) ta	rget year	NA			
AMI	N	Α	NA			
target	17	75	16	60		
slope	а	b	а	b		
2007 fit	17.2792	40.20	17.2792	40.20		
160%	23.8848	-49.44	21.8376	-45.20		
140%	20.8992	-21.38	19.1079	-19.55		
120%	17.9136	6.67	16.3782	6.10		
100%	14.9280	34.73	13.6485	31.75		
90%	13.4352	48.76	12.2836	44.58		
80%	11.9424	62.78	10.9188	57.40		
70%	10.4496	76.81	9.5539	70.23		
60%	8.9568	90.84	8.1891	83.05		
50%	7.4640	104.86	6.8242	95.88		
40%	5.9712	118.89	5.4594	108.70		
30%	4.4784	132.92	4.0945	121.53		
20%	2.9856	146.95	2.7297	134.35		
10%	1.4928	160.97	1.3648	147.18		
0%	0.0000	175.00	0.0000	160.00		

- cost assessment model based on model for M1s from previous projects
 - divides distribution efforts per manufacturer over vehicle segments based on lowest overall manufacturer costs
 - equal marginal costs per segment
 - improved to take account of maximum reduction potential per segment
- assumptions on autonomous mass increase (AMI)
 - AMI = 0.0% p.a. / 0.82% p.a. / 1.5% p.a. for consistency with M1 assessment
 - AMI = 2.5% considered not likely for N1s
 - sales per class kept constant
- AMI is only time-dependent parameter in model
 - cost curves are static: cost for level of reduction if required to meet target in 2012-2015 period

- 175 g/km can be met for mass-based limit with slope ≥ 80%
- 160 g/km can not be met with existing cost curves
 - except for percentage reduction target and low AMI

utility = re	eference	mass	2012 aver	age CO2	emission						
target	year	AMI	target defi	arget definitions							
[g/km]		p.a.	0%	20%	40%	60%	80%	100%	120%	140%	percentage
175	2012	0.0%	176,4	175,8	175,1	175,1	175,0	175,0	175,0	175,0	175,0
175	2015	0.0%	176,4	175,8	175,1	175,1	175,0	175,0	175,0	175,0	175,0
160	2015	0.0%	164,3	163,4	162,6	161,8	161,1	160,5	160,2	160,3	160,0
175	2012	1.5%	178,0	177,2		175,7	175,2	175,1	175,1	175,1	175,0
175	2015	1.5%	179,1	178,2	177,4	176,5	175,8	175,3	175,1	175,2	175,0
160	2015	1.5%	169,2	168,3	167,6	167,0	166,3	166,2	166,2	166,2	165,1

utility = pa	an area		2012 aver	age CO2 e	emission						
target	year	AMI	target defin	arget definitions							
[g/km]		p.a.	0%	20%	40%	60%	80%	100%	120%	140%	percentage
175	2012	0.0%	176,4	176,0	175,6	175,4	175,4	175,4	175,4	175,4	175,0
175	2015	0.0%	176,4	176,0	175,6	175,4	175,4	175,4	175,4	175,4	175,0
160	2015	0.0%	164,3	163,9	163,5	163,1	162,7	162,3	162,0	161,9	160,0
175	2012	1.5%	178,0		177,2	176,8	176,3	176,2	176,2	176,2	175,0
175	2015	1.5%	179,1	178,7	178,3	177,9	177,4	177,0	176,8	176,8	175,0
160	2015	1.5%	169,2	168,7	168,3	168,0	167,7	167,4	167,1	167,1	165,1

^{1 - 2} g/km above target

> 2 g/km above target

- example of distributional impacts:
 - 175 g/km in 2012/15, mass-based, AMI = 0.0% p.a.

CE Delft

- example of distributional impacts
 - 175 g/km in 2012/15, mass-based, AMI = 0.0% p.a.

- example of distributional impacts
 - 160 g/km in 2015, mass-based, AMI = 0.0% p.a.

- example of distributional impacts:
 - 175 g/km in 2012/15, pan area based, AMI = 0.0% p.a.

comments:

- high reductions in petrol segment can be considered artefact of modelling approach
 - will not happen in practice due to low sales numbers
 - has negligible impact on cost analysis
- some manufacturers have more difficulty than others in reaching target, mostly related to large pick-ups in LCV sales
- if overall target is not met, costs of various target definitions can not be accurately compared

Conclusions:

- mass-based limit function with slope ≥ 80% leads to:
 - lowest average costs per vehicle for meeting target
 - € 1650 1750 (8 9.5%) per vehicle for 175g/km in 2012/15 with AMI = 0.0%
 - € 3050 3120 (13 15%) per vehicle for 175g/km in 2015 with AMI = 1.5.0%
 - equal distribution of efforts among manufacturers
- non-zero AMI has strong impacts on costs
 - but non-zero AMI less likely in vans compared to M1
- pan area based limit function leads to:
 - higher costs for meeting target
 - stronger distributional impacts

LCVs & CO₂ | Perverse incentives

- high slope of mass-based limit function may create incentive to increase mass in order to reduce required CO₂ reduction effort
- general principles similar to M1 case

example from M1 analysis

 $\Delta CO_2 / CO_2 = \gamma \times \Delta m / m$

LCVs & CO₂ | Perverse incentives

- option 1: simply add weight ("brick in the boot")
 - v = 0.35
 - goes at expense of payload
 - slope < 30% needed to avoid this
- option 2: add weight and compensate power to maintain performance
 - y = 0.65
 - makes cars more expensive, trend in LCVs unknown
 - slope < 60% needed to avoid this
- option 3: sell heavier, more luxurious and more powerful cars (increase power-to-weight ratio)
 - $\gamma > 0.65$
 - very unlikely for rational LCV market

LCVs & CO₂ | Perverse incentives

Conclusion:

 advantages of using a slope of 80% or more, as identified in the cost assessment, can be considered to outweigh the possible perverse incentives for mass increase provided by higher slope values for the mass-based limit function

LCVs & CO₂ | Conclusions

- 175 g/km target can be reached in 2012/15
 - at around 10% retail price increase
- 160 g/km target not feasible for 2015
 - based on static cost curves for 2012-15 period with conservative safety margin for assessing total reduction potential for combined measures
 - assessment of LT target for 2020 still on-going
 - analysis will include additional technological options and cost reduction as function of cumulative production due to learning effects
- mass-based limit function with slope ≥ 80% preferred due to:
 - lowest average costs per vehicle for meeting target
 - most equal distribution of efforts among manufacturers
 - limited chance of perverse effects compared to M1
- non-zero AMI has strong impacts on costs
 - impacts on CO₂ corrected by adjusting limit curve

LCVs & CO₂

Thank you

