Session A: Energy Intensive Industries (CCS and CCU)

13:30 - 14:45

15:00 - 16:30

16:30 - 17:00

17:00 - 17:15

Sector working sessions (parallel sessions) Session A: Energy Intensive Industries (CCS and CCU) Session B: Clean tech manufacturing, Renewable energy use and Energy storage use

#### Coffee Break

Sector working sessions (parallel sessions) Session C: Net Zero Mobility: Aviation, Maritime & Road Transport Session D: Battery manufacturing

Key takeaways from discussions of sectoral sessions

Concluding remarks and next steps



### Innovation Fund portfolio by Climate mitigation pathways

Climate mitigation pathways describe the innovative technologies implemented by the projects leading to GHG emissions avoidance. A project can have one or several pathways

### **Projects by category**



### **Climate mitigation pathways**

### Energy Intensive Industries (EII) Including CCS and CCU



Climate mitigation pathways\* implemented by projects in the Energy Intensive Industry and CCS categories

| <ul> <li>Renewable H2</li> <li>Low carbon H2</li> <li>H2 industrial applications</li> <li>H2 for transport</li> <li>H2 for</li></ul> | Hydrogen (38%)                                                                                                        | CCUS (18%)                                                                    | Recycling / Reuse<br>(17%)                                                                                                                                    | Renewable energy<br>(9%)                                                                                         | New Materials /<br>Processes (9%)                                                                                                                         | Energy Storage<br>(1%)                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Renewable H2</li> <li>Low carbon H2</li> <li>H2 industrial applications</li> <li>H2 for transport</li> </ul> | <ul> <li>CO2 capture</li> <li>CO2 storage</li> <li>CO2 utilisation</li> </ul> | <ul> <li>Biogenic waste</li> <li>Plastics and other<br/>organic chemicals</li> <li>Municipal solid<br/>waste</li> <li>Construction</li> <li>Metals</li> </ul> | <ul> <li>Bio-based</li> <li>Wind</li> <li>Solar PV</li> <li>Manufacturing of components</li> <li>Heat</li> </ul> | <ul> <li>Cement &amp; Lime</li> <li>Glass, ceramics &amp; construction materials</li> <li>Iron &amp; Steel</li> <li>Metals</li> <li>Refineries</li> </ul> | <ul> <li>Batteries</li> <li>Hydrogen storage</li> </ul> |



\*The climate mitigation pathways describe the technology of the projects leading to GHG emissions avoidance. A project can have one or several pathways

## Energy Intensive Industries: policy developments

Immavera Sardone, DG GROW, Policy Officer - I.1 – Energy intensive industries and raw materials



## EU Energy-Intensive Industries Ecosystem



7.8 million people employed



4.55% of EU value added, (EUR 549 billion)



548,000 firms, 99.4% SMEs

The EIIs Ecosystem covers chemicals, steel, paper, plastics, mining, extraction and quarrying, refineries, cement, wood, rubber, non-ferrous metals, glass and ceramics. They represent 17% of EU GHG emissions

| Key Challenges                                                                                                                                                                                    | Transformative initiatives                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Technology challenge</b> – technologies are not yet available or not demonstrated at industrial scale                                                                                          | The Ells will need a substantial amount of <b>decarbonised energy at an</b><br><b>internationally competitive price.</b><br><b>Industrial transition requires adequate Infrastructure</b> to supply energy,<br>transport carbon (CCU/CCS), etc. |
| <b>Energy</b> – Cost and availability of clean Energy crucial for the transition of the Ells                                                                                                      | Creating markets and stimulating demand for green and circular products is key for accelerating the twin transition.                                                                                                                            |
| Investment challenge – high investment needs, long payback periods and no business case                                                                                                           | For green transformation at scale, the policy framework should further support the business case for private investments.                                                                                                                       |
| <b>Competitiveness challenge</b> – Global overcapacity in some products (steel, aluminium) and emerging, threatening viability of the EIIs in the EU. Dumping threats and unfair trade practices. | A level playing field, an effective carbon leakage prevention framework<br>is needed to support competitiveness of the industry during the<br>transition.                                                                                       |



5

## EU toolbox to support the Ells transformation

### A supportive regulatory framework

Fit for 55 Package 2021

- EU ETS, CBAM, RED, Hydrogen & Gas Package
- Circular Economy Package 2022
- Sustainable products, standards
- Green Deal Industrial Plan 2023
- Electricity market design
- Critical Raw Materials Act
- Net Zero Industry Act



### HorizonEurope

- Process4Planet
- Innovation Fund
- State aid policy (CEEAG;

IPCEI)

Recovery & Resilience

Facility



Trade & International Cooperation

- Trade defence
   Instruments
- International Partnerships
- Global cooperation on climate



### **European Critical Raw Materials Act**

Ensure a secure and sustainable supply of critical raw materials for the Union



**Strengthen** all stages of the European CRM value chain



Improve EU capacity to monitor and **mitigate risks of disruption** to CRM supply



**Diversify** EU CRM imports to reduce strategic dependencies



Improve CRM circularity and sustainability



## Timeline for the STRATEGIC PROJECTS





### **Net Zero Industry Act**

Strengthen and scale-up European clean energy technologies manufacturing

- Fast-track and streamline permitting
- Focus investment on strategic projects along the supply chain
- Access to market: resilience and sustainability criteria in public procurement
- Skills: Net-Zero Industry Academies

### Relevance for Energy intensive Industries

#### **1.** Accelerate decarbonisation

Supports clean technologies key to decarbonise EIIs (Hydrogen, CCUS, electricity generation technologies)

#### 2. CO2 storage provisions

will remove barrier for investment in CO2 capture by industrial sectors that will need CCS/U to decarbonize

#### 3. Components

Ells producing components that go into net-zero technologies fall under NZIA scope & benefit of same advantages



### **Transition Pathways for Industrial Ecosystems**

**Goal:** an **action plan for the twin transition and resilience of industrial ecosystems** co-created by the European Commission, Member States and relevant stakeholders (industry representatives, RTO, social partners, NGO, etc..)























Commission

## Industrial Carbon Management (ICM) for the EU

Daniel Kitscha, DG CLIMA, Policy Officer - C.2 – Low Carbon Solutions (II): Research & Low Carbon Technology Deployment



<u>NZIA</u>: strategic recognition of CCUS as net-zero technologies for the EU; deployment of first  $CO_2$  storage sites by 2030; obligation to oil and gas industry to play their part; annual progress reporting on  $CO_2$  value chains in MS.

NZIA

ICM

**Strategy EU** 

**Net-Zero** 

Industry

Net-Zero Industries need to store their hard to abate process emissions (limestone, cement) to reach net-zero in the EU; however, CO<sub>2</sub> storage sites and transport means are needed before they will be captured.

Industrial Carbon Management (ICM) Strategy Communication (COM(2024) 62 final): CCS, CCU, Removals/CDR as important pathways to reach net-zero in the EU and cross-border CO<sub>2</sub> transport infrastructures as key enabler.

## Industrial Carbon Management (ICM)

**Commission Communication (6.2.2024)**\*, with actions for the Union and Member States to implement to reach net-zero

Three "ICM" technological pathways:

• **Capturing CO**<sub>2</sub> emissions for **storage** (CCS)

Key enabler : CO<sub>2</sub> transport infrastructure

- **Removing CO<sub>2</sub>** from the atmosphere (BioCCS and DACCS)
- Capturing CO<sub>2</sub> for **utilisation** (CCU)





**CO<sub>2</sub> capture needs in 2040** *Climate Modelling:* 

2030: ~50 Mtpa 2040: ~280 Mtpa 2050: up to 450 Mtpa



## Key ICM policy actions@ next Commission

### Develop **EU policy support options**:

- **Removals** deployment based on market demand
- CCU uptake with accounting in the EU ETS.

### **Investment and funding:**

- Work with MS, to develop Important Projects of Common European Interest (IPCEI)
- Consider market-based funding mechanisms (i.e. CO<sub>2</sub> competitive bidding auctions as a service)

### **Creating enabling environment**

- Public awareness: public debate at MS level, rewards for local communities where storage happens
- Research and innovation (R&I) based on project
   knowledge-sharing

<u>CO<sub>2</sub> Demand Aggregation</u> <u>Platform</u> matching storage with emitters by 2030

<u>CO<sub>2</sub> Storage Atlas for the EEA</u> finding storage capacity for 2040

*Climate law:* **2040 carbon removals objective** for climate neutrality by 2050?

Prepare: <u>future CO<sub>2</sub> transport</u> <u>regulatory package</u> & EU-wide infrastructure planning mechanism



## Net-Zero Industry Act (NZIA) regulation\* = the 1st legal building block for ICM



**Legal objective** for the EU to enable an **annual 50 million tonnes** of CO<sub>2</sub> to be stored permanently underground by 2030.

**European oil and gas** producing **industries must contribute** with their assets and/or their financial resources to develop operational geological  $CO_2$  storage sites.

#### More transparency for investors on:

- **Demand and supply**: CO<sub>2</sub> storage, CO<sub>2</sub> capture, and CO<sub>2</sub> transport in the Member States.
- **Geological data** for future storage sites to be made public
- Annual progress of ongoing CO<sub>2</sub> value chain projects

**Support for manufacturing** of carbon management technologies **& deployment** of Net-zero strategic projects (capture, transport & storage)



## Q&A Section



## Innovation Fund – Stakeholder insights – Energy Intensive Industries

Koen Coppenholle, A.SPIRE, Chief Executive CEMBUREAU, The European Cement Association





### **EU Process Industry Association**

**Established in July 2012** 



Minerals



Pulp & paper

nt Ceramics

s Chemicals

л Л

Refining



Engineering

3

Steel

Non-ferrous metals

<u>r Vr</u> Vr Vr



۱



### Water



+22 EU Countries



+180 Members teaming up



ASPIRE



### Overview of the sector and innovative technologies



Figure 1: Resource and energy flows of the process industries in 2050.



## Overview of the sector and innovative technologies





Circularity

Competitiveness



Climate

Neutrality

| Innovation Area                                            | Innovation programme                                                       | 2024                             | 2030 | 2040 | 2050 |
|------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|------|------|------|
|                                                            | 1a - Integration of renewable heat and electricity                         | 32%                              | 100% | 100% | 100% |
| Integrating renewable energy                               | 1b - Integrating circular carbon into energy applications                  | 0%                               | 60%  | 100% | 100% |
| energy source                                              | 1c - Hybrid fuel transition technologies                                   | 38%                              | 100% | 100% | 100% |
|                                                            | 1d - Flexibility and demand response                                       | 25%                              | 75%  | 100% | 100% |
| Heat reuse                                                 | 2a - Advanced heat reuse                                                   | 13%                              | 38%  | 100% | 100% |
| Electrification of thermal                                 | 3a - Heat pumps                                                            | 15%                              | 54%  | 100% | 100% |
| processes                                                  | 3b - Electricity-based heating technologies                                | 0%                               | 38%  | 100% | 100% |
| and a second second                                        | 4a - Electrochemical conversion                                            | 0%                               | 31%  | 100% | 100% |
| Electrically driven processes                              | 4b - Electrically driven separation                                        | 0%                               | 60%  | 100% | 100% |
|                                                            | 5a - Alternative hydrogen production routes                                | 25%                              | 38%  | 75%  | 100% |
| Hydrogen integration                                       | 5b - Using hydrogen in industrial processes                                | 11%                              | 67%  | 100% | 100% |
|                                                            | 5c - Hydrogen storage                                                      | 0%                               | 75%  | 100% | 100% |
| CO, capture for utilisation                                | 6a - Flexible CO, capture and purification technologies                    | 15%                              | 54%  | 85%  | 100% |
|                                                            | 7a - CO, utilisation in concrete production                                | 0%                               | 50%  | 100% | 100% |
| CO <sub>2</sub> utilisation in minerals                    | 7b - CO <sub>2</sub> and CO mineralisation to produce building materials   | 0%                               | 50%  | 100% | 100% |
|                                                            | 8a - Artificial photosynthesis                                             | 0%                               | 0%   | 50%  | 100% |
|                                                            | 8b - Catalytic conversion of CO, to chemicals/fuels                        | 0%                               | 13%  | 47%  | 100% |
| CO <sub>2</sub> & CO utilisation in<br>chemicals and fuels | 8c - Utilisation of CO <sub>2</sub> and CO as a building block in polymers | 0%                               | 25%  | 63%  | 100% |
|                                                            | 8d - Utilisation of CO to chemicals and/or fuels                           | 0%                               | 100% | 100% | 100% |
|                                                            | 9a - Next-gen catalysis                                                    | 10%                              | 29%  | 81%  | 100% |
| Energy and resource efficiency                             | 9b - Breakthrough efficiency improvement                                   | 14%                              | 49%  | 100% | 100% |
|                                                            | 10a - Innovative materials of the process industries                       | 0%                               | 25%  | 75%  | 100% |
| Circularity of materials                                   | 10b - Inherent recyclability of materials                                  | 0%                               | 25%  | 75%  | 100% |
|                                                            | 10c - Upgrading secondary resources                                        | 5%                               | 30%  | 98%  | 100% |
|                                                            | 10d - Wastewater valorisation                                              | 26%                              | 44%  | 91%  | 100% |
| Industrial-Urban symbiosis                                 | 11a - Demonstration of Industrial-Urban Symbiosis                          | 0%                               | 67%  | 100% | 100% |
|                                                            | 12a - European Community of Practice                                       | 33%                              | 50%  | 75%  | 100% |
| Circular regions                                           | 12b - Development of Hubs for Circularity                                  | 16%                              | 34%  | 72%  | 100% |
|                                                            | 13a - Digital materials design                                             | 18%                              | 100% | 100% | 100% |
| Digitalisation                                             | 13b - Digital process development and engineering                          | 25%                              | 100% | 100% | 100% |
|                                                            | 13c - Digital plant operation                                              | 58%                              | 100% | 100% | 100% |
|                                                            | 13d - Intelligent material and equipment monitoring                        | 73%                              | 100% | 100% | 100% |
|                                                            | 13e - Autonomous integrated supply chain manage-<br>ment                   | 32%                              | 100% | 100% | 100% |
|                                                            | 13f - Digitalisation of industrial-urban symbiosis                         | 64%                              | 100% | 100% | 100% |
| Non-technological aspects                                  | 14a - Integration of non-technological aspects in calls                    | s Integrated in other programmes |      | r    |      |
|                                                            | 14h - Human resources skills and labour market                             | 20%                              | 52%  | 76%  | 100% |

### Overview of the sector and innovative technologies

A.SPIRE members have indicated their intention to invest in 'marbles' to bring them to TRL9, confirming a market pull for the innovations and the relevance of this SRIA. A marble is a first of a kind (FOAK) large scale build-up of one or more new technologies, integrated in its value chain, deployed by leading companies within the Process Industries

In P4Planet SRIA, 94 marbles were scheduled for launch and deployment in the period 2021-2030

|     | Sectors   | Description                                                                                                                                    | Timing<br>demo | Large Scale       |           |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|-----------|
| No. |           |                                                                                                                                                |                | Budget<br>/mil. € | Timing    |
| M1  | Refining  | Electric heaters (small-medium)                                                                                                                | 2023-2025      | 30                | 2025-2030 |
| M2  | Chemicals | Electrified Cracking (e-Cracker)                                                                                                               | 2023-2027      | 200-300           | 2027-2031 |
| M3  | Refining  | Green H <sub>2</sub> (Electrolyser)                                                                                                            | 2023-2025      | 70                | 2025-2030 |
| M4  | Chemicals | Methane Pyrolysis                                                                                                                              | 2023-2027      | 100-200           | 2027-2031 |
| M5  | Refining  | CCUS (refining sector) - CO <sub>2</sub> capture - Amines                                                                                      | 2023-2025      | 500               | 2025-2030 |
| M6  | Chemicals | Sustainable access to CO <sub>2</sub>                                                                                                          | 2024-2030      | 2x25-50           | 2024-2030 |
| M7  | Refining  | CCUS (refining, power or other sectors) - CO <sub>2</sub> capture<br>- Chilled ammonia, polymeric membranes, solid<br>sorbents, CF2 technology | 2023-2025      | 40                | 2025-2030 |

Ilustrative image of the list included in Processes4Planet SRIA (pages 90 – 95)

#### **Projects that require further funding**

- MefCO2/STEPWISE: TRL 9 / new process compared to standard methanol
- DryFiciency: first-time industrial demonstration of industrial high temperatre heat pumps (up to 160°)
- <u>Etekina</u>: waste heat sources and low temperature heat sinks in other EII (steel, ceramics, non-ferrous)
- ✓ <u>SIMPLIFY</u>: sonication nad micro-wave processing of Materual feedstock
- ✓ **<u>ROMEO</u>+MACBETH**: innovative reaction/CMR
- ✓ HYFLEXPOWER: world's first 100% H2 industrial gas turbine operating at 100% H2

22

## Feedback from projects

- Review the level of amounts available in relation to the number of projects with regard to the amount of ETS theoretically available
- Review the method for assessing the innovative nature of projects: the scopes are so different (from CCS as such to the creation of a complete value chain), the boundaries of 'innovative' are blurred/unclear
- The impact in terms of GHG reduction on absolute emissions is counterproductive in that it penalises operators who have reduced their emissions as much as possible through conventional measures
- The concept of scalability/replicability is important for the deployment of projects and technologies. Nevertheless, it is worth considering whether this should not become the essential criterion (rather than expecting innovations every year). However, the scope of these criteria needs to be clarified
- ✓ The ranking and arbitration procedures could do with more transparency
- ✓ Consideration should be given to the merits of thinking in terms of clusters of
- regions/countries.... since the creation of critical mass for transport and storage infrastructures is essential.



## Type of support required



### INNOVATION FUND GREAT INSTRUMENT , BUT...

✓ 8 times oversubscribed

- ✓ Selection on "degree of innovation"…
- ✓ need for <u>Deployment</u> Fund
- Limited support for OPEX until FID/company does upfront fiffancing/ WACC rate backdrop for EE

### OTHER FINANCING INSTRUMENTS HAVE THEIR LIMITS

- ✓ IPCEI: find the champion MS...
- ✓ Modernisation Fund: CCUS...?
- ✓ JTF: regional pockets

### SUGGESTIONS

- ✓ Frontload future ETS revenues in sectoral dedicated funds
- ✓ Pool national and EU resources / CCUS needs to be part of NECPs
- ✓ CfD stronger framework
- One-stop-shop for project applications
- CAPEX/OPEX coverage throughout funding instruments

(support FEED

studies)



European Commission

## Type of support required

- The EU cement sector alone will need 12 million tons of CO2 storage across the EU by 2030
- Critical issues:
  - Avoiding a "two-speed Europe" when it comes to CO2 storage
  - Specificities of landlocked plants
  - Access to CO2 infrastructure at reasonable conditions
- NZIA very welcome
- Critical to expedite CO2 storage mapping
- De-risk full (new) CCS value chain ("chicken&egg" emitter/storage operator)
- Reasonable market conditions for access





## Type of support required

450 Mt CO<sub>2</sub>/year



Source: VITO study for CEMBUREAU

Annual C02 feedstock needed

- 70mt 120mt by 2030
- 250mt 420mt by 2050
- Estimated CO2 from biogenic sources by 2050: 21mt 63 mt annually /DAC?

### Current EU framework is a major obstacle to CCU deployment:

- RFNBO Delegated act prevents the use of industrial CO2 in synthetic fuels as of 2040 (review clause)
- ETS revision should tackle accounting / needs to be at point of release
- <sup>2</sup>The notion of "permanent" and "non-permanent" use needs to be clarified



## **Conclusions and recommendations**

✓ Need to adapt regulation and financing to new value chains

- ✓ De-risk full value chain / everyone needs a business case
- ✓ Accelerate standardisation process to accompany project development
- Creative thinking on funding for breakthrough technologies
- Ensure infrastructure development with fair access
- Eliminate legal uncertainty around innovative projects (e.g. CCU)
- $\checkmark_{_{30}}$  Ensure consistency and flow along TRL levels



## Q&A Section



## **Discussion Section**

Chris Malins, Cerulogy, CEO



# We want to hear your views and your experience

What measures can be implemented to enhance the attractiveness of the IF to smaller companies and underrepresented sectors? Are there any elements of the GHG calculation that you have found it particularly challenging or burdensome to complete (not including cases where you found the rules unclear)? What have been the most relevant changes in the market conditions during the last year? Which sectors were affected the most? Which types of support have proven to be particularly successful?



What measures can be implemented to enhance the attractiveness of the IF to smaller companies and less represented sectors?





Are there any elements of the GHG calculation that you have found it particularly challenging or burdensome to complete?







What have been the most relevant changes in the market conditions during the last year? Which sectors were affected most? Which types of support have proven to be particularly successful?

In last year's consultation you answered...

"which areas would benefit from auctions? Other funding measures required?"

| Auctions are useful for the whole sector                  |      |
|-----------------------------------------------------------|------|
| 10 %                                                      |      |
| Suctions are useful for certain sectoral techs            |      |
| 32 %                                                      |      |
| Public funding other than grants and auctions is required |      |
|                                                           | 57 % |

With respondents from the Chemical (11%), cement and lime (7%), ferrous and non-ferrous metals (7%), pulp and paper (5%), and glass and ceramics (3%).



## Slido Poll

- 1. How can the IF enhance attractiveness to smaller companies and less represented sectors?
- 2. Which elements of the GHG calculation you have found particularly challenging or burdensome?
- 3. What subsector are you from?





## Slido Poll Results

What measures can be implemented to enhance the attractiveness of the IF to smaller companies and underrepresented sectors?





### **Slido Poll Results**

Are there any elements of the GHG calculation that you have found particularly challenging or burdensome to complete (not including cases where you found the rules unclear) ?

| Which elements of the GHG calculation you have found particularly challenging or burdensome? $47$ $\stackrel{.}{_{\sim}}$ |
|---------------------------------------------------------------------------------------------------------------------------|
| Calculation of a credit for CCU/CCS                                                                                       |
| Choosing the case to set the reference scenario                                                                           |
| Calculating reference scenario emissions 21%                                                                              |
| Identifying emission factors for inputs                                                                                   |
| Identifying inputs as de minimis/minor/major 17%                                                                          |
| Rules on dealing with biogenic carbon                                                                                     |
| Making a hybrid application 32%                                                                                           |
| Other 2%                                                                                                                  |



## **Slido Poll Results**

### What subsector are you from?

| What subsector are you from? | 59 B |
|------------------------------|------|
| cement and lime 19%          |      |
| chemicals 24%                |      |
| ferrous metals 2%            |      |
| glass and ceramics 7%        |      |
| non-ferrous metals 8%        |      |
| pulp and paper 3%            |      |
| 20%                          |      |
| other                        | 53%  |



3