

ACEA presentations HDV discussion

SLIDES FOR STAKEHOLDER MEETING 16-01-2018
BRUXELLES

ACEA

DAIMLER

AKTIENGESELLSCHAFT

HDV CO2 standards ACEA view on limit structure

Henk Voets – WGCO2HDV

FROM DECLARATION GROUPS TO SUB-GROUPS

Description of elements relevant to the classification in vehicle groups				Allocation of mission profile and vehicle configuration							cation
Axle configuration	Chassis configuration	Technically permissible maximum laden mass (tons)	Vehicle group	Long haul	Long haul (EMS)	Regional delivery	Regional delivery (EMS)	Urban delivery	Municipalutility	Construction	Standard body allocation
4x2	Rigid	>3.5 - <7.5	(0)		•				•	•	•
	Rigid (or tractor)**	7.5 – 10	1			R		R.			Bl
	Rigid (or tractor)**	>10 - 12	2	R+T1		R		R.			B2
	Rigid (or tractor)**	>12 – 16	3			R		R.			B3
	Rigid	>16	4	R+T2		R			R		B4
	Tractor	>16	5	T+ST	T+ST+T2	T+ST	T+ST+T2				
4x4	Rigid	7.5 – 16	(6)						•		•
	Rigid	>16	(7)								
	Tractor	>16	(8)								
6x2	Rigid	all weights	9	R+T2	R+D+ST	R	R+D+ST		R		B5
0X2	Tractor	all weights	10	T+ST	T+ST+T2	T+ST	T+ST+T2				

Within a VECTO declaration group (4,5 9 or 10) the vehicle characteristics vary substantially due to different applications. Cabin type and engine power are proposed as the defining parameters for specific UD, RD or LH subgroups.

PROPOSAL FOR SUB-GROUPS

- Each subgroup is mission profile related and should have its specific CO2 limit in gr/ton.km
- Despite of the subgroup definition a restricted number of vehicles will have special applications to be optimised differently. The values and numbers vary between the OEM's.
 - A Traction subgroup is proposed to allow a special vehicle exclusion share.
- In class 9 and 10 at high engine powers an HP dependent payload curve* is proposed for high capacity vehicles.

HDV CO2 standards
ACEA view on credit system

Volker Hasenberg – WGCO2 HDV

REDUCING CO₂ MOST COST-EFFECTIVELY Flexibilities lead to an optimized regulation

Strength of flexibilities:

- Allow fitting regulation better to real truck market
- Reflect long product cycles and development time
- Balance inopportune but unavoidable portfolio shifts (driven by market demand/GDP, see chart on the left)
- Accelerate technology development (e.g. by special credits)

• Trucks are not just big cars. A credit system considers specific truck market conditions and thus, enables a cost optimized CO2 reduction on a level playing field. That will likely translate into the "best" price for the customer

BASIC PRINCIPLES ON A CREDIT SYSTEM

"Each tonne counts equal!"

Basic principles

- Specific reduction targets for each sub-group in g CO₂/tkm (reflecting specific mission in real world)
- Credit/debit calculated in absolute g CO₂ per year (each tonne counts equal)
- Credit/debit averaging over all groups (4, 5, 9, 10)
- Credit/debit banking over time (3 years backwards, 5 years forward)
- Early credits (generate credits before limits are mandatory)
- **Super credits** for low emissions vehicles to support mass market

· Credits/debits must reflect real CO2 emissions ("each tonne counts equal") then flexibilities do not lead to unfair or unwanted effects

THANKYOU FOR YOUR ATTENTION

European
Automobile
Manufacturers
Association

@ACEA_eu www.ACEA.be