Greenhouse gas efficiency in the industry

The European Union and the rest of the world

TNO | Knowledge for business

Jeroen Kuenen & Peter Bosch

This presentation reflects the views of the consultants and not the position of the European Commission

Outline

- Background
- Introduction to greenhouse gas efficiency concepts
- General methodology and data availability
- Results per industry branch
- Main conclusions

Background

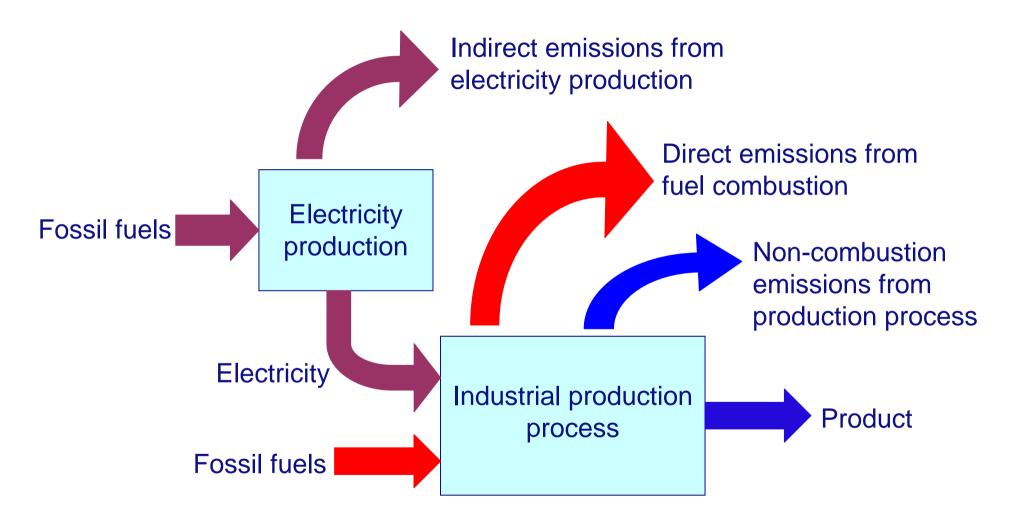
- Revision of ETS Directive
- Possible reallocation of industries to non-EU countries could lead to "carbon leakage"
 - Loss of market share to less carbon efficient installations outside EU, thus leading to overall higher greenhouse gas emissions
- This study: Gather, assess and compare available data on greenhouse gas efficiency of industrial installations covered by the ETS in the EU and other industrialized and developing countries
 - Current differences between installations in EU and non-EU countries
 - Differences when Best Available Technologies (BAT) would be applied

Industries and gases

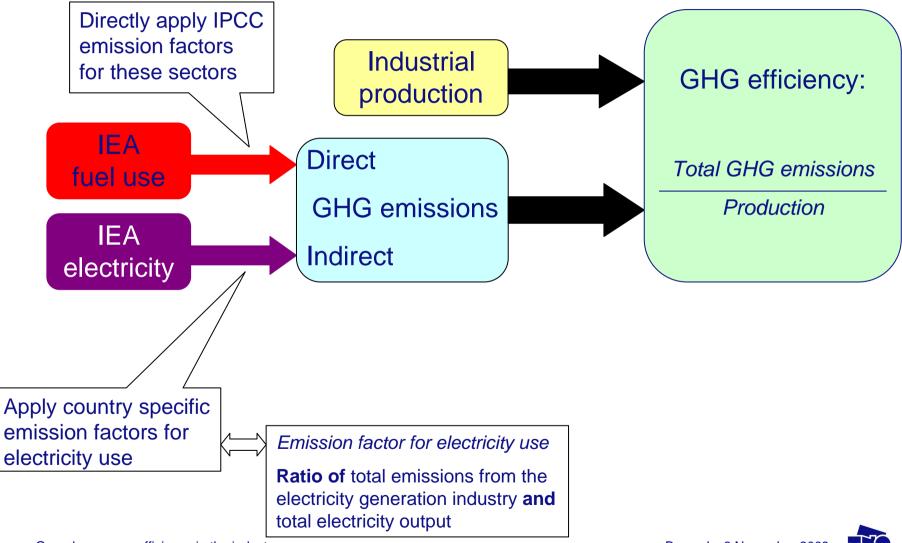
- Iron and steel industry
- Non ferrous metal industry
 - Production of Aluminium, Copper, Lead, Zinc
- Mineral industry
 - Production of Cement, Lime, Glass
- Chemical industry
 - Production of Sulphuric acid, Ammonia, etc.
- Paper and pulp industry
- Focus on CO₂ in this study
 - CH₄ and N₂O important for some specific processes in the (chemical) industry
 - PFCs in the aluminium industry

Countries considered

- European Union
- Other industrialized countries (non-EU) (7)
 - USA, Canada, Japan, Russia, Ukraine, Turkey, Switzerland
- Developing countries (8)
 - China, India, Brazil, South Africa, South Korea, Mexico, Indonesia, Thailand
- Selections based on
 - shares of industry in GDP (selection of "industrialised countries")
 - initial screening of data availability


Data availability

- Initial screening shows poor data availability for most branches
 - Energy use: IEA statistics include fuel and electricity use for all countries & sectors, but only at an aggregated sector level
 - Production data (total product produced per country/annum): for some industries available, but for others not
 - Statistical reporting has problems, e.g. the use of CHP plants in the pulp and paper industry, which is not reflected in the statistics
- For a reliable comparison between countries, more detailed data are needed regarding
 - Production
 - Energy consumption (both fossil fuels and electricity) at a more detailed level than available from the Energy Statistics
- This study can therefore not provide reliable conclusions regarding exact amounts of carbon leakage, but can help to gain insight in the main factors determining greenhouse gas efficiencies

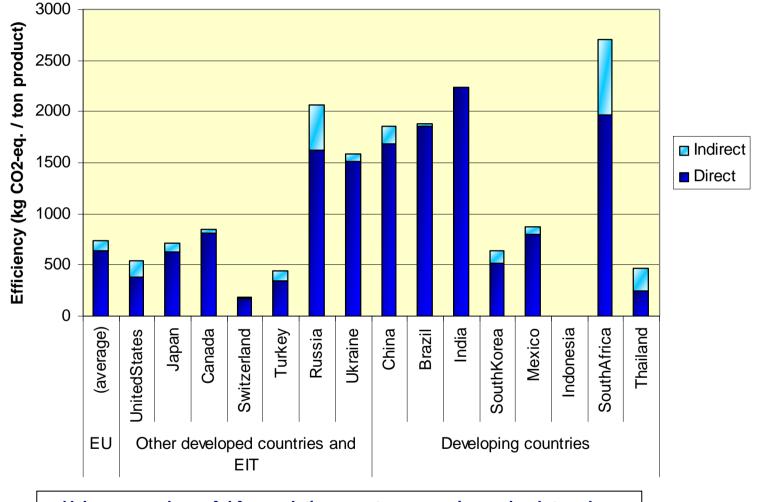

6 Greenhouse gas efficiency in the industry

Greenhouse gas efficiencies

General methodology using IEA Statistics

Greenhouse gas efficiency in the industry 8

Data availability: statistical route


• Fossil fuel and electricity use: IEA major source, but limited detail

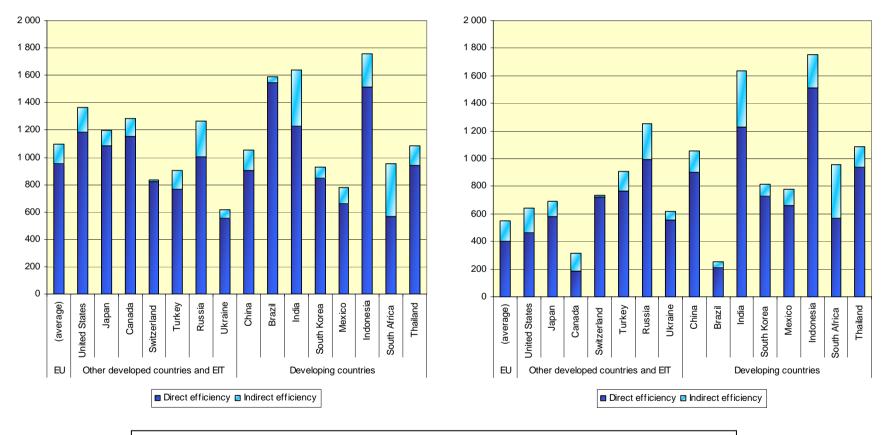
Industrial category	IEA category	ISIC
Iron and steel	IRONSTL	2731
Non-ferrous metals	NONFERR	2732
Chemicals and petrochemical	CHEMICAL	24
Pulp, paper and print	PAPERPRO	21 and 22
Non-metallic minerals	NONMET	26

- Emission factors for greenhouse gases: from IPCC 2006 Guidelines
- Industrial production data
 - available for some major sectors from international databases, e.g. iron and steel, cement, paper
 - very limited availability for most other sectors
- Alternative route: Specific energy requirements of process types, combined with typical fuels used and CO₂ emission factors, can be converted to CO₂ efficiencies
 - limited info on use of processes by country

Iron and Steel industry

Values are only useful for a relative country comparison; absolute values may differ considerably from reality due to lack of reliable data in this study

10 Greenhouse gas efficiency in the industry



Pulp and paper industry

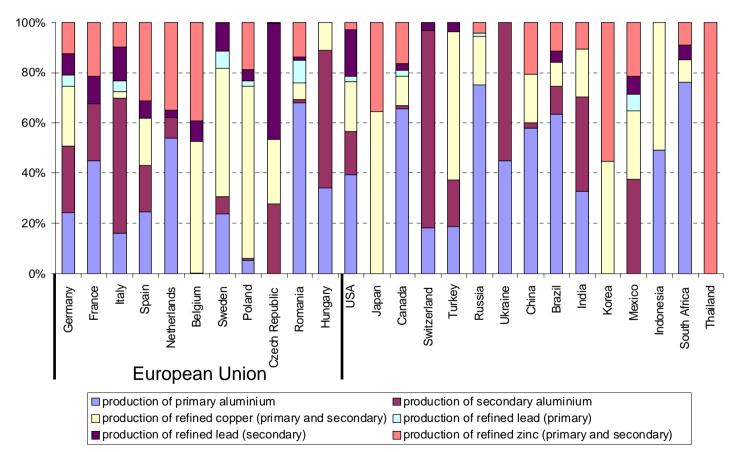
- General methodology using IEA statistics unreliable
 - Large extent of on-site CHP plants (not included in Energy Statistics)
 - Use of black liquor (from chemical pulping) to produce electricity
 - Heavily dependent on bio energy, with limited CO₂ reduction potential
- Use process specific data on energy efficiency
 - Fuel & electricity intensity for each specific process route
 - Data on the share of each process route in each country
 - GHG emission factors from IPCC
 - Data from IEA, BREF and FAOstat

Pulp and paper industry

including biomass emissions

Values are only useful for a relative country comparison; absolute values may differ considerably from reality due to lack of reliable data in this study

12 Greenhouse gas efficiency in the industry


Brussels, 6 November 2009

excluding biomass emissions

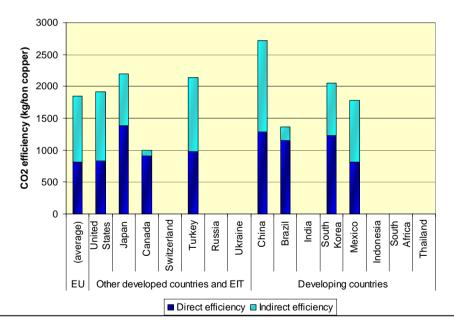
Non ferrous metal industry

- Broad sector; major differences per country
- IEA energy data too aggregated and not usable ○

13 Greenhouse gas efficiency in the industry

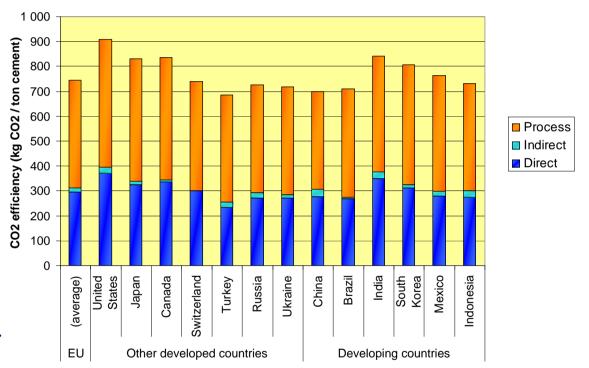
Brussels, 6 November 2009

Similar situation for:


- Mineral industry

- Chemical industry

Subbranches non-ferrous metals

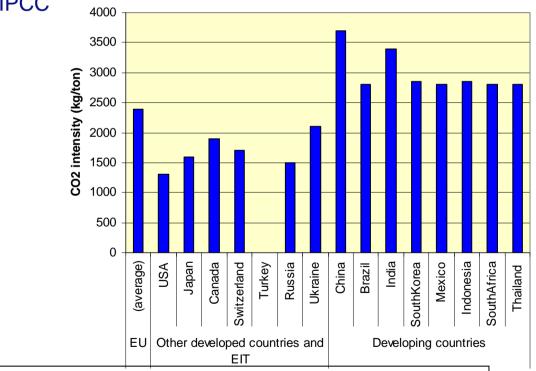

- Look at different kinds of non-ferrous metal production
- As for pulp and paper, use process specific intensities from literature
- Two important parameters that determine the CO₂ efficiency:
 - Fossil fuel use in production process and electricity generation processes
 - Type of production (primary, secondary)
- Example: copper, pyrometallurgical process
 - Data not available for all countries
 - Generally, coal based economies are higher
 - Electricity use is very important parameter

Values are only useful for a relative country comparison; absolute values may differ considerably from reality due to lack of reliable data in this study

Mineral industry: Cement production

- Statistics available for cement production; for other sectors lacking
- **Cement**: China main producer (2005: 46% globally)
- Significant part of the CO₂ emissions are from calcination rather than from combustion
- Efficiencies calculated using specific process types and their typical fuel efficiencies

Values are only useful for a relative country comparison; absolute values may differ considerably from reality due to lack of reliable data in this study


Chemical industry

- Very broad and diverse sector
- Limited availability of data; if available then with gaps
- Country comparisons as for other sectors not possible
 - Specific energy intensities for specific process routes available from literature
 - But share of each process route per country not available
- Try to collect other relevant information
 - Example: Ammonia production

Ammonia production

- Rough guess estimates of GHG efficiency possible by combining:
 - reported emissions and production data from UNFCCC (Annex I only)
 - continent specific energy requirements from literature
 - CO₂ emission factors from IPCC

Values are only useful for a relative country comparison; absolute values may differ considerably from reality due to lack of reliable data in this study

17 Greenhouse gas efficiency in the industry

Overall conclusions

- Comparisons between countries often impossible due to lack of sufficient and reliable statistics
 - IEA Energy Statistics only at aggregated level
 - Problems with statistical reporting, e.g. the use of combined heat and power plants (CHP) in pulp and paper industry
 - Unavailability of statistics at a detailed level for many branches
- For a reliable comparison between countries, more detailed data are needed regarding
 - Production
 - Energy consumption (both fossil fuels and electricity)

Preliminary conclusions

- Efficiencies derived in this study are only useful for a relative comparison between countries
 - Absolute values may differ considerably from reality due to unreliable and insufficient data used in this study
- Greenhouse gas efficiency depends heavily on
 - Type of industry
 - Energy source in country of origin (EU) and destination
 - Electricity generation source in country of origin (EU) and destination
 - Specific production process
- Higher CO₂ intensities are generally found in coal-based economies such as China
- The potential differences in greenhouse gas efficiencies between countries is very different between industrial sectors

Thank you for your attention !!!

20 Greenhouse gas efficiency in the industry

