

Current policies (how big are the gaps?) vs. target scenarios (which societal and political conditions do we expect?)

Current policies

Continuation of current and likely-tosee policies (Germany and internationally)

Economic and climate policy background: economic growth path, basically lack of enhanced climate policy coordination internationally

Global climate protection

States stick to 2°C-target

Climate instruments are **coordinated internationally**

Economic growth and open markets

Investments in climate technologies speed up innovation

Low fossil fuel prices continue

Willingness to pay for climate protection

Lack of global ambition

Only some countries continue to pursue ambitious climate targets.

Various **national efforts** coexist next to each other

Economic growth and open markets

Less innovation acceleration

Fossil energy prices rise

Focus on **prosperity**. Less **willingness to pay** for climate protection

Climate paths

Detailed current policies scenario, identification of gaps

G80 Detailed analysis 80 % path

G95 Detailed analysis 95 % path

N80 Detailed analysis 80 % path

N95 Basic analysis 95 % path

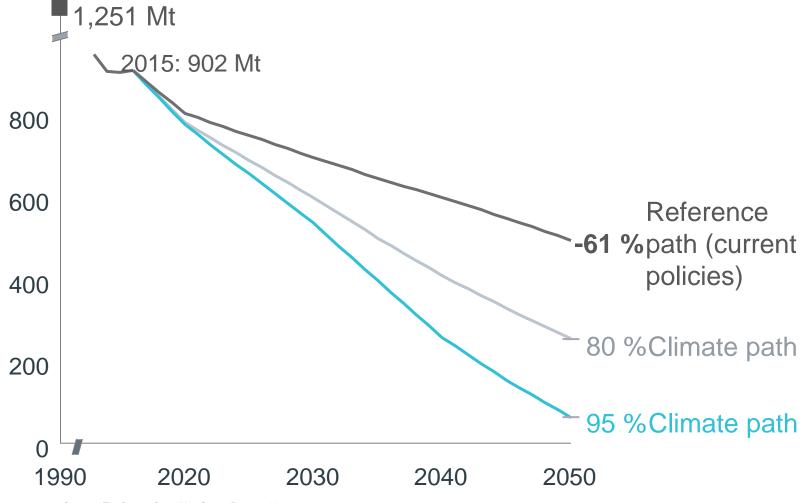
Assumptions: Oil prices and CO₂ prices

Oil prices (all price assumptions for fossil fuels according to WEO 2016, IEA)

Ref, N: 2020: 79 \$/barrel 2030: 111 \$/barrel 2050: --- 115 \$/barrel

G: 2020: 70 \$/barrel 2030: 80 \$/barrel 2050: 50\$/barrel

CO₂-prices (according to WEO 2016, IEA)


Ref, N (EU): 2020: 11 €/t 2030: 26 €/t 2050: → 45 €/t

G: 2020: 18€/t 2030: 55 €/t 2050: →124 €/t

61 % reduction of greenhouse gases as current policies are continued...

Greenhouse gas (GHG) emissions in Germany

Million Tons CO₂ equivalents

Sources: The Boston Consulting Group, Prognos 2017

80 % path achievable with technologies known to us today

95 % path to breach technical feasibility and social acceptance

340 TWh Imports "renewable fuels" (PtL, PtG)

Energy: 295 GW wind

and PV, grid extension

Energy: 100 % renewable with PtG, gas-grid as seasonal storage

Buildings: 70 % increase in the building refurbishment rate (1.9 % p. a.)

Buildings: Heating free of fossil fuels (through 16 mn. heat pumps and 100 % renewable district heating)

Industry: ... produces with recycled carbon from biomass incineration

Industry: 100 % renewable heat / steam through biogas and PtG ...

Mobility: 33 mn. electric vehicles, 4/5 of passenger cars

Mobility: 8.000 km of electric overhead lines for highway trucks

Farming: "methane pill" for cattle population

Carbon Capture and Storage for steal, cement, ammonia, refineries, waste combustion

PtL = Power-to-Liquid, PtG = Power-to-Gas All figures refer to 2050

Additional investments of € 1,500 to € 2,300 bn. until 2050

Cumulative marginal investments until 2050 (vs. scenario without GHG reduction efforts)

80 % economically feasible – 95 % only globally achievable

€]

Additional investment¹

€ 1.500 billion

80 %-Climate path

Additional net cost for economy¹

€ 470 billion

Ø € 15 billion annually

GDP-effect

At least no negative effect in all scenarios

Massive investment Economically achievable

95 %-Climate path

€ 2.300 billion

€ 960 billion

Ø € 30 billion annually

At least balanced effect or slightly positive effect with global cooperation

Huge ambition technologically and regarding acceptance

Only possible with global consensus

^{1.} Jeweils kumuliert für die Jahre 2015 bis 2050; Inklusive Investitionen und Mehrkosten der Referenz; bei einem volkswirtschaftlichen Zinssatz von 2 %; Importe zu Grenzübergangspreisen