Practical Alternatives To MB For Use As QPS Treatments In North America.

Paul Fields

Agriculture and Agri-Food Canada, Winnipeg, Canada

Lisa Neven

USDA-ARS, Yakima Agricultural Research Laboratory

Judy Johnson

USDA-ARS, San Joaquin Valley Agricultural Sciences Center

Overview

- QPS in US and Canada
- Empty Ship Hold Treatments
- RF to Control Insects in Walnuts
- Low O₂ with Prevention
- Heat + Controlled Atmospheres (CATTS)

QPS use of MB

Location	Year	% of total MB	Amounts (mt/y)
World	2000	20	10,500
USA	1996-98	1	294
Canada	2003	8	17

QPS Use in USA 1996-1998.

Sector	Commodity Use (%)	
Import	Fruits	31
	Vegetables	6
	Cotton	7
	Other	12
Export	Fruits/Nuts	25
	Dunnage	8
	Timber	6
	Cotton	5

Vick and Schneider 2002

Overview

- QPS in US and Canada
- Empty Ship Hold Treatments
- RF to Control Insects in Walnuts
- Low O₂ with Prevention
- Heat + Controlled Atmospheres (CATTS)

Treatments

- Methyl bromide + recapture
- Phosphine, 500 ppm, ECO₂ FUME
- Phosphine, 1000 ppm, Generator with MgPH₃
- Untreated

Methyl bromide + Recapture

zeolite molecular sieve

Phosphine, 500 ppm, ECO₂FUME

- 2% phosphine gas in 98% CO₂
- 9 cylinders used for 8000 m³

Phosphine, 1000 ppm DEGESCH Generator with MgPH₃

- Requires water + power
- Some waste product

Treatments of Ship Holds

Insects in Ship Hold

- Insects pulled after 32, 48, 72 h
- 4 species

Survival of eggs in ship hold compared to eggs in untreated hold.

Duration (h)	Survival of lesser grain borer eggs (%)			
	MB	Phosphine	Phosphine	
		500 ppm	1000 ppm	
32	0	6.4	3.4	
48	-	0.4	0.3	
72	-	0	0	

Red flour beetle and rice weevil had lower survival than lesser grain beetle

Ship Hold Conclusions

- 80% of MB was recaptured, no added time
- More could have been recaptured
- Phosphine generated quickly with ECO₂FUME and DEGESCH generator
- Phosphine controlled all adults after 32 h and all eggs after 72 h.

Overview

- QPS in US and Canada
- Empty Ship Hold Treatments
- RF to Control Insects in Walnuts
- Low O₂ with Prevention
- Heat + Controlled Atmospheres (CATTS)

California is a leading producer and exporter of nuts

California walnut industry relies heavily on the export market

Postharvest insect pests are a major marketing issue

Navel orangeworm

Codling moth

Indianmeal moth

Radio Frequency Treatments

- Heating throughout the product is very rapid
- May result in greater heating of insect vs product
- Lower temperature of product may result in improved product quality
- Can be applied as a continuous process

Comparing Heating Methods

Product and Method	Time (min)	Temp (°C)
Walnut - Hot Air	40	48
Walnut - Radio Frequency	3	53
Cherry - Hot Air	23	44
Cherry - Radio Frequency	2	50

RF Studies with Infested Walnuts

Mortality of NOW in RF Treated Walnuts

Treatment	Mortality (%)		
Control	0		
47°C	32		
50°C	77		
53°C	99		
55°C	100		
n= 193-333			

Factors Affecting Efficacy

- Product moisture content
- Product orientation
- Location of target insect
- Preconditioning temperatures

Experimental RF Unit

RF Conveyor Belt Unit

Application to Fresh Fruit

- More difficulty with uniformity
- Most successful when treated in saline
- More quality problems (cherry stems)

Overview

- QPS in US and Canada
- Empty Ship Hold Treatments
- RF to Control Insects in Walnuts
- Low O₂ with Prevention
- Heat + Controlled Atmospheres (CATTS)

Efficacy of Low O₂ Disinfestation Treatments

Insect	Commodity	Survival (%)	
	-	Untreated	0.4% O ₂
Navel orangeworm	walnuts	81	0.4
Navel orangeworm	almonds	97.5	5.0
Raisin moth	raisons	63	0

After low O₂, cold treatment, 10°C.

Indianmeal moth damage (%) at end of test

Commodity	Untreated -	Protective treatment after low O ₂		
		Virus	10°C	5% O ₂
Walnut	35.1	0.2	0	0
Almond	28.0	2.0	0.3	0
Raisin	13.2	0	0	0

test 12-40 wks

Number of live Indianmeal moth found in final product.

	l lintro oto d	Protective treatment after low O ₂		
Commonly	Untreated	Virus	10ºC	5% O ₂
Walnuts	1,270	3.3	1.0	0
Almonds	172	1.6	0	0
Raisins	31	0	0	0

Overview

- QPS in US and Canada
- Empty Ship Hold Treatments
- RF to Control Insects in Walnuts
- Low O₂ with Prevention
- Heat + Controlled Atmospheres (CATTS)

Organic Quarantine Treatments for Pome and Stone Fruits

> Lisa Neven, David Obenland, Stephen Drake, Guy Hallman USDA-ARS

Quarantine treatments to export USA fruit

Codling moth damage

CATTS

Atmosphe

Controlled Atmosphere Temperature Treatment System

Controls & Monitors:

O₂, CO₂, air speed, humidity, temperatures, (source, surface & core)

Commercial CATTS at TechniSystems factory in Chelan, WA

Why CATTS?

- Heat can kill insects, but can damage fruit
- Fruit can do without oxygen
- Insects need oxygen
- Insects need oxygen to respond to heat loads
- High CO₂ impairs insect response to heat
- **THUS**: High temp + low O_2 + high CO_2 = fast kill!
- Faster control, shorter treatment, better for fruit

CATTS Conditions for Quarantine Treatment

12°C/hr

Treatments Developed

- Sweet Cherries: codling moth & Western cherry fruit fly
- Peaches & Nectarines: codling moth & oriental fruit moth
- Apples & Pears: codling moth, oriental fruit moth, apple maggot, plum curculio

Treatments Developed

- Oxygen = 0.5 1.0%
- Carbon dioxide = 15%
- Relative Humidity = 100%
- Temperature = 44 46°C
- Time = 0.5 6.0 hours

Overview

- QPS in US and Canada
- Empty Ship Hold Treatments
- RF to Control Insects in Walnuts
- Low O₂ with Prevention
- Heat + Controlled Atmospheres (CATTS)

Ship Hold Alternatives

- Abell Pest Control Ltd.
- Adalia Preventive Services Ltd.
- Robert Brigham
- Cryo-Line Supplies Ltd.
- Cytec Canada Inc.
- Degesch America Inc.
- Fumigation Service and Supply Inc.
- PCO Services Inc.
- Mahueu and Maheu Inc.
- Upper Lake Group Inc.

Radio Frequency Team Members

Heat + Controlled Atmospheres (CATTS)

- Techni-Systems LLD
- Food Pro International
- Commercial Dehydrators
- PacOrganic
- California Tree Fruit Agreement
- USDA-APHIS
- Washington Tree Fruit Research Committee
- Inland-Joseph
- The hard working technical and support personnel at the Yakima Agricultural Research Laboratory

Contact information

- Paul Fields, <u>pfields@agr.gc.ca</u>
 - http://www.agr.gc.ca/science/winnipeg/cgs_e/.htm
 - http://home.cc.umanitoba.ca/~fieldspg/fields/fields.htm
- Judy Johnson, jjohnson@fresno.ars.usda.gov
- Lisa Neven, <u>neven@yarl.ars.usda.gov</u>
 - http://www.yarl.prosser.wsu.edu/Scientists/Neven/Neven_CV.htm