

Solutions for an improved ETS

Peter Botschek

ETS Review Group meeting on 21/22 May 2007

ETS Review objectives

ETS design should be

- enabling industry to meet, in a more cost-effective manner, emission reduction goals
- consistent with efficient growth and competitiveness
- globally compatible
- minimizing competitive distortions between sectors or installations inside and also outside the EU

ETS design and competitiveness

Competitive impacts

- indirect costs through electricity prices ('windfall profit' issue)
- administrative costs e.g. from monitoring, reporting and verification requirements
- compliance costs for direct emissions

ETS design and competitiveness

- The chemical sector is vulnerable
- We act in global markets and are unable to pass on ETS costs, i.e. impact on electricity price
 - The chlor alkali industry output the electricity cost of the full manufactured cost is about 50%. Some 60% of the EU chemical industry as a whole is itself dependent on some form of chlorine product supply.

Targeted introduction of performance-based allocation (e.g. through benchmarks) to large emitting, homogenous processes

 Other activities may remain allocated with reference to historical emissions where this is the most workable methodology

Linking allocation to production

- Helps meeting better allocation needs
- Addresses issues of
 - relocation of production ("carbon leakage")
 - binding of market share
 - 'windfall profits'

ETS design: Solutions

Small emitters must be excluded from EU ETS since their participation is not cost effective

- The European chemical industry consists of some 27.000 SMEs (small and medium size enterprises)
- UK Environment Agency: Operators below 25KtCO2/a have total costs of participation of €3/tCO2 to > €8/tCO2

Auctioning aggravates ETS impacts

- Theoretically, auctioning of allowance would be an ideal way of allowance allocation - if applied world-wide
- Auctioning limited to the EU will result in a
 - large up-front payment which will harm global competitiveness of EU business and
 - remove funding for research and development, innovative solutions for climate change

Recycling of auctioning revenues

Challenges:

- ETS impacts on competitiveness are bigger than auctioning revenues – even if 100% redistributed
- Recycling
 - leads to additional administrative procedures and costs
- Diversity of practice in member states may not lead to leveling the playing field

Backup slides

Chemical industry energy profile

Source: IEA

Chemical industry Energy sources

Energy Consumption by source

Energy is a huge cost factor:

Consumption accounts for roughly 160Mtoe (3% of global and about 12% of EU energy demand*1)

Costs account for 10 – 60% of production costs of most products

^{*1} Source: EC European Energy Outlook and Cefic

Energy cost of most important sources for EU15 chemical industry

Sources: Cefic, IEA and UN

Notes: Energy efficiency is measured by energy input per unit of chemicals production

* EU 15

GHG emissions, energy consumption, production trends

GHG emission trends

