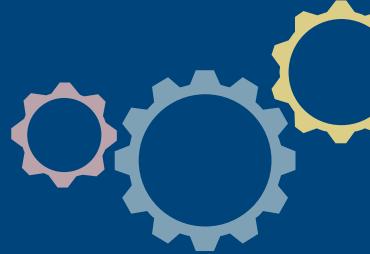


## **An Integrated Approach**


to passenger car related CO<sub>2</sub> emissions

Presentation at ECCP Conference 24 October 2005

Hermann Meyer, Environment Policy

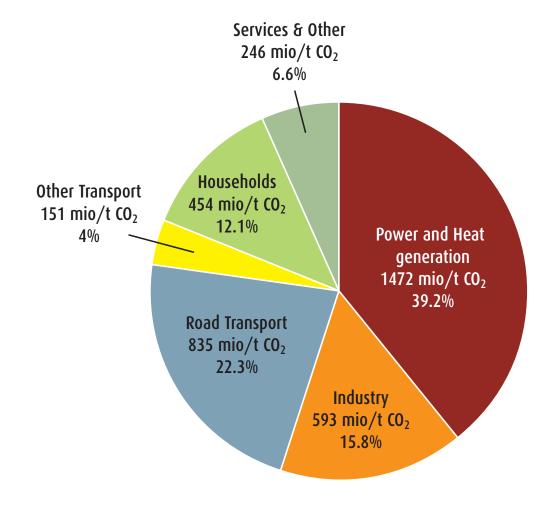
EUROPEAN AUTOMOBILE
MANUFACTURERS ASSOCIATION







#### Content

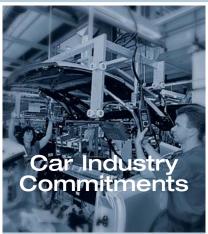

- The CO<sub>2</sub> Challenge
- **©** Current Political Measures
- The CO<sub>2</sub> Emission Reduction Potential and Cost of120 g/km Target for Vehicle Technology Only
- 4 An Integrated Approach to meet the CO<sub>2</sub> Challenge
- (5) Conclusion



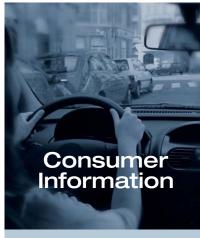


## The CO<sub>2</sub> Challenge

## CO2 emissions from energy (EU25, Mio. t CO<sub>2</sub>)








#### **Current Political Measures**



→ 140 g/km target for 2008/2009



 Fuel consumption and CO<sub>2</sub> emission labeling of cars



Fuel taxationVehicle taxation



→ 6<sup>th</sup>/7<sup>th</sup> Framework Programme

**EU CO<sub>2</sub> Reduction Strategy for New Passengers Cars** 

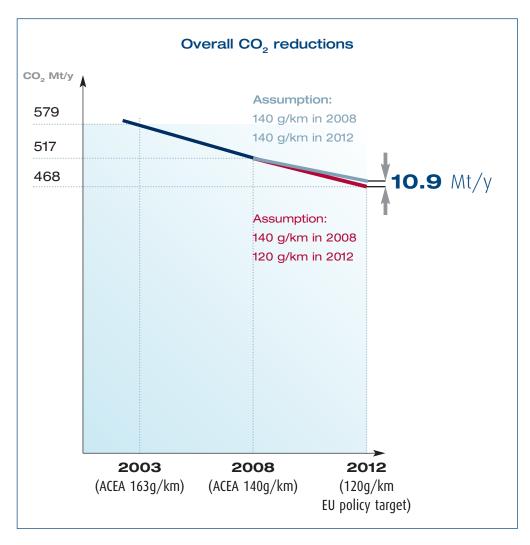


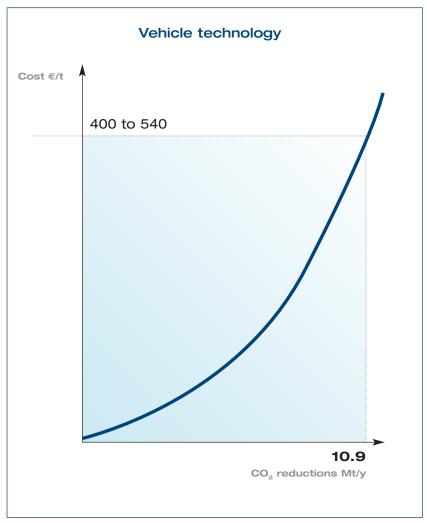


### **Current Political Measures**

# Current indicative alternative fuel targets in the EU as percentage of transport fuel market

|                                                            | 2010                     | 2015       | 2020 |
|------------------------------------------------------------|--------------------------|------------|------|
| Biofuels (Fame, Ethanol/ETBE, biogas, Synthetic Fuels from | <b>5,75</b> % n Biomass) | <b>7</b> % | 8%   |
| Natural Gas                                                | 2%                       | 5%         | 10%  |
| Hydrogen                                                   | _                        | 2%         | 5%   |
| Total                                                      | 7,75%                    | 14%        | 23%  |


All figures based on energy content






## The CO<sub>2</sub> Emission Reduction Potential and Cost of 120 g/km Target for Vehicle Technology Only

## Further technology measures have limited CO<sub>2</sub> impact at high cost











## An Integrated Approach to meet the CO<sub>2</sub> Challenge

# An Integrated Approach for reductions of car related CO<sub>2</sub> emissions will achieve more at lower costs



## 3-step approach

- → 1: Identify potential activities to reduce CO<sub>2</sub> emissions with all stakeholders involved
- → 2: Identify and compare the costs and CO<sub>2</sub> reduction potentials of these potential activities
- → 3: Identify measures to promote the most cost-effective activities





## An Integrated Approach to meet the CO<sub>2</sub> Challenge

# Step 1: Identify activities to reduce CO<sub>2</sub> emissions with all stakeholders involved (EXAMPLES)



- Further increase market penetration of CO<sub>2</sub> efficient technologies
- Further increase market penetration of new technologies for alternative fuels
- Support eco-driving activities
- Consummer information

- Further increase market penetration of alternative fuels
- Support eco-driving activities

- Improve road and traffic management infrastructure
- R&D support for vehicle technologies and alternative fuels
- Support eco-driving activities
- Consummer information





# Mil.

### Potential Activities of an Integrated Approach

AUTOMOTIVE INDUSTRY AND SUPPLIERS (1)

## Further increase market penetration of CO<sub>2</sub> efficient technologies

emissions

#### Combustion efficiency

e.g new combustion processes, DI technology, variable valve control, cylinder deactivation

#### Rolling resistance

e.g. low friction tyres brake drag reduction

#### Weight reduction

e.g. high strength steel, aluminium, magnesium, plastics, composite materials

#### **Drivers information devices**

Gear shift indicators fuel economy indicators

#### **Energy management**

e.g. hybrid technologies

#### **Engine improvement**

e.g. thermomanagement, reduced friction

#### **Aerodynamics**

e.g. shape, airflow management

#### Improvement transmission

e.g. reduced friction, longer gear ratios





# Milita.

## Potential Activities of an Integrated Approach

AUTOMOTIVE INDUSTRY AND SUPPLIERS (2)

## Further increase market penetration of technologies for alternative fuels



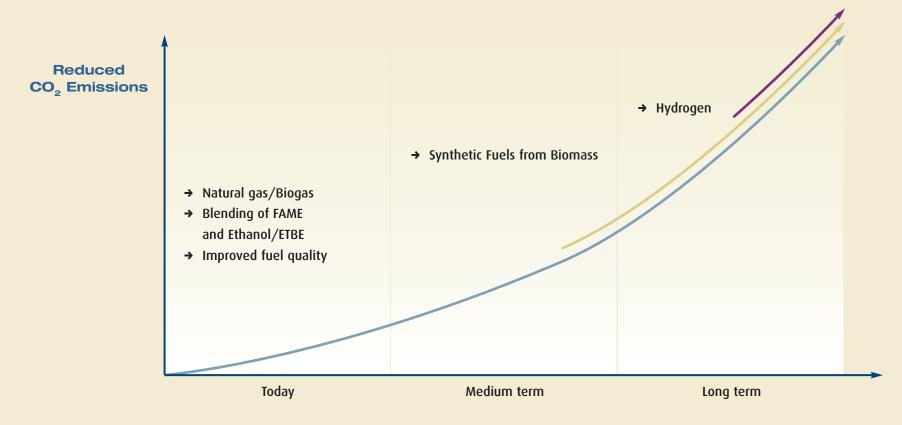
Enabling technologies



→ Alternative fuels

- → Natural gas vehicles
- → Blend tolerant powertrains
- → FlexFuel vehicles
- → Hydrogen vehicles

(internal combustion, fuel cell)



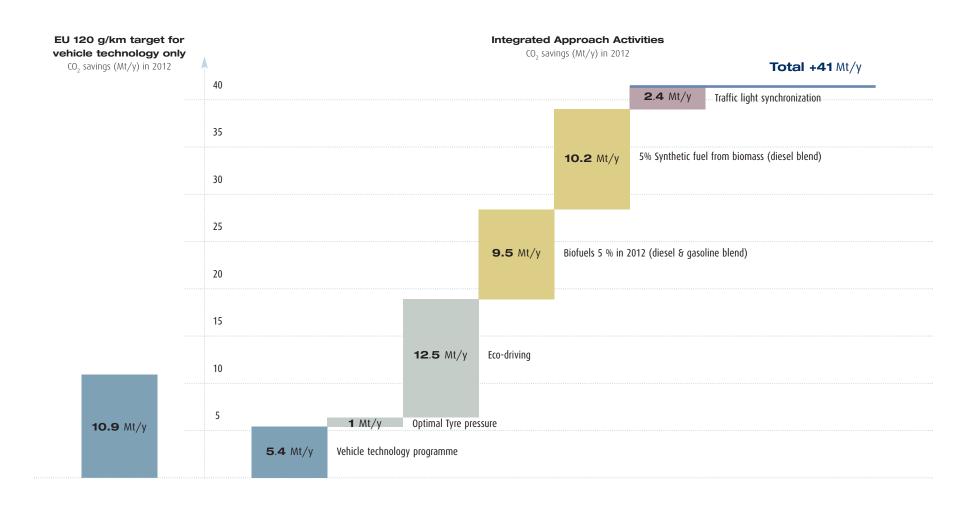



## Potential Activities of an Integrated Approach

FUEL INDUSTRY (1)

## Further increase market penetration of alternative fuels



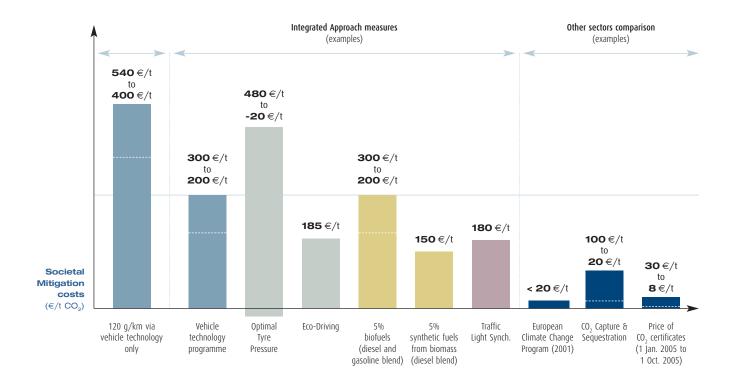



FAME (Fetty Acid Methyl Ester) / ETBE (Ethyl Ter Butyl Ether)



## An Integrated Approach to meet the CO, Challenge

# Step 2: Indentify and compare the costs and CO<sub>2</sub> reduction potentials of potentials activities (data are indicative only)








#### An Integrated Approach to meet the CO, Challenge

# Step 2: Indentify and compare the costs and CO<sub>2</sub> reduction potentials of potentials activities (data are indicative only)



- → Integrated Approach enables inclusion of activities to reduce passenger car related CO₂ emissions with lower societal mitigation costs.
- → In other sectors much lower societal mitigation costs.







## An Integrated Approach to meet the CO<sub>2</sub> Challenge

Step 3: Identify measures to promote the most cost-effective activities (EXAMPLES)



Fuel Industry



(Examples of potential measures)

#### Implement voluntary initiatives

- → vehicle technology initiatives:
  - → further development and market penetration of CO2 efficient conventional and alternative technologies
  - → fitting of gear shift indicators and fuel economy indicators
  - → improvement and increased fitting of low friction tyres
  - → measure to optimise tyre pressure
- → support common initiative to educate drivers on eco-driving

(Examples of potential measures)

#### Implement voluntary initiatives

- → further increase market penetration of alternative fuels
- → development and maintenance of appropriate tyre inflation infrastructure
- → support common initiative to educate drivers on eco-driving

(Examples of potential measures)

- Investigate fuel price increases and fuel taxation impact on CO<sub>2</sub> emissions
- Shift basis of annual car taxation to CO,
- Invest to improve road and traffic management infrastructure
- Support new technologies and new fuels
- Support initiatives on optimal tyre pressure
- Support eco-driving activities
- Support common initiative to educate drivers on eco-driving
  - Ensure consistency of existing legislation
    - → consider trade offs with other political aims





#### Conclusion

**ACEA** welcomes an Integrated Approach to reduce passenger car related CO<sub>2</sub> emissions and to enhance the energy security.

- → It will deliver more CO<sub>2</sub> savings (up to 4 times) at lower cost (half the cost)
- → It will draw-in various stakeholders into a joint endeavour, that will provide the best opportunity to achieve substantial CO<sub>2</sub> emission reductions and to save fossil resources in line with EU objectives today and in the future.
- → It will protect the economic health and global competitiveness not only of the European automotive industry, but also of the EU economy.

**ACEA** thanks the Commission and other EU institutions to act as a promoter and mediator of the Integrated Approach.

