

Emission reduction potential in shipping

ECCP - WG Ships Meeting 3

Tore Longva November 16, 2011

Content

Emission reduction potential: comparison of studies

Impact of EEDI and SEEMP: IMO study

Conclusion

Comparison of studies

	Target year	Fuel price \$/t	Baseline Mt	Cost- effective potential	Total potential*
DNV	2030	380	~1500	~30%	~55%
CE Delft	2030	700	~1900	~40%	~45%
SNAME	2030	900	~2000	~45%	~45%

^{*}Highest reported potential - scenarios vary

The studies agree on a potential of 45%-55%, where most are cost-effective at the current fuel price.

What will drive the implementation?

Sources:

- DNV (2009): Pathways to low carbon shipping
- CE Delft (2009): Technical support for European action to reducing Greenhouse Gas Emissions from international maritime transport
- SNAME/IMarEST (2011): Marginal Abatement Costs and Cost Effectiveness of Energy-Efficiency Measures
- Comparison study by CE Delft (2011): Analysis of GHG Marginal Abatement Cost Curves

AVERAGE MARGINAL CO, REDUCTION COST PER OPTION – WORLD SHIPPING FLEET IN 2030

Figure 18 Marginal CO₂ Abatement Costs for the Maritime Transport Sector in 2030 relative to frozentechnology scenario, Range of Estimates, US\$ 700/ tonne fuel, 9% Interest Rate

Figure 6-3 Aggregated MACC in 2030 with \$900 per ton fuel price and 10% discount rate for all ship types

Study on effect of EEDI and SEEMP (November 2011)

PROJECT FINAL REPORT

- Purpose: Analyse the potential reduction resulting from the mandated energy efficiency regulations on EEDI and SEEMP
- Commisioned by IMO and undertaken by Lloyds Register and DNV

ASSESSMENT OF IMO MANDATED ENERGY EFFICIENCY MEASURES FOR INTERNATIONAL SHIPPING

ESTIMATED CO₂ EMISSIONS REDUCTION FROM INTRODUCTION OF MANDATORY TECHNICAL AND OPERATIONAL ENERGY EFFICIENCY MEASURES FOR SHIPS

Report Authors:
Zabi Bazari, Lloyd's Register, London, UK
Tore Longva, DNV, Oslo, Norway

Date of report: November 2011

Will be issued as MEPC 63/INF.2

World fleet effects

 Business-as-usual CO₂ emissions expected to reach 2-3 billion tonnes in 2050

	Average of A1B-4 and B2-1					
Year	BAU Mt	Reduction Mt	Reduction %	New level Mt		
2020	1103	152	14%	951		
2030	1435	330	23%	1105		
2040	1913	615	32%	1299		
2050	2615	1013	39%	1602		

SEEMP reduction will be more significant in the short run, while the effect of EEDI will have a large effect in the long term.

3500

EEDI reduction

SEEMP reduction

New emission level

BAU

1500

500

2050

2010

2015

2020

2025

2030

2035

2040

Marginal abatement cost curve

AVERAGE MARGINAL CO, REDUCTION COST PER OPTION – WORLD SHIPPING FLEET IN 2030

Impact of fuel prices on operational reductions

- Most operational measures are cost-effective even under the reference fuel price scenario
 - The measures have a relatively low cost
 - High fuel prices will not directly increase the uptake
- Non-financial barriers will play a more significant role
 - Lack of capital
 - Lack of competent personnel
 - Cooperation between actors
 - Split incentives (implementer may not benefit)

SEEMP will increase the awareness of the potential of energy efficiency measures

Non-financial barriers preventing implementation of cost-effective measures

Concluding remarks

- Several published studies show that there is a high potential for reduction – around 50%
- EEDI and SEEMP mandated with amendments to MARPOL Annex VI
 - Impact study shows that over time the EEDI will reduce emissions by 13% and SEEMP by 9 % in 2030 and by 55%/14% in 2050
 - New technologies needed to reach this level. Potential technologies in 2050 are not identified
 - SEEMP does not directly require reductions but will increase the awareness of the potential of energy efficiency measures
- Most operational measures are cost-effective but many are not implemented
 - Non-financial barriers hinders the implementation

High fuel prices will drive technology development, but non-financial barriers may need others incentives to overcome.

Safeguarding life, property and the environment

