

Review of in use factors affecting the fuel consumption and CO₂ emissions of passenger cars – On going study

Brussels 9 December 2014

Nikiforos.Zacharof@jrc.ec.europa.eu Georgios.Fontaras@jrc.ec.europa.eu

Introduction

- Shortfall in fuel consumption between type approval and real world conditions
- Reasons for the shortfall
- Many factors are already identified
- On going work to better assess impacts
- Targeted actions to reduce unnecessary fuel consumption

Literature review

Approximately 220 references were reviewed consisted of journal papers, scientific, industrial and government publications and magazines

Certification test margins

- Smooth driving pattern and increased idling
- Auxiliary systems are not used
- High test temperature
- Other test related margins

Factors	Effect on FC
NEDC design & conditions	22.5%
Various factors	4%
Lower declared values	4%

Auxiliary systems

- Steering is not included in type approval test
- Mandatory use of other auxiliaries (e.g. headlights, wipers)
- Energy consumption is variable

Factors*	Effect on FC	-15% 0% 15% 30% 45% 60%
Air conditioning	9.3%	
Steering assist systems (HPAS, EHPAS, EPS)	4.5%	F4
Other (headlights, wipers, etc.)	6.5%	

^{*} For continuous usage in reality specific usage factors apply for each individual auxiliary which reduce the effect when considering an average use 5 of 15

Aerodynamics

- Vehicle's aerodynamic design
- Speed of the vehicle
- Speed and angle of the wind

Factors	Effect on FC
Roof add - ons (various objects)	3.3%
Roof boxes (unladen)	6.4%
Open windows	5.1%
Sidewinds effect (wind velocity, angle)	2.0%
Improvements (spoiler, Vortex generators)	-0.4%

Weather conditions

Temperature affects cold start, cabin heating, lube, tyres, friction Rain, snow/ice cause:

- Increased road loads
- Grip losses / slip

Factors	Effect on FC
Rain (Depending on conditions)	30.0%
0°C compared to 20°C	9.8%
-20°C compared to 0°C	11.3%
Snow/Ice	Qualitative data

Driving behavior/style

- Real world driving speed profile
- Trip schedule
- Drivers style (aggressive, mild)

Factors	Effect on FC
Aggressive driving	24.0%
Trip type (short trips)	10.0%
Eco - driving	-6.0%
Built-in driving modes	Qualitative data

Depending on mode

Vehicle condition

- Better energy efficient class in tires decreases fuel consumption
- Winter all season tires comparison not possible due to lack of data
- LVLs and better maintenance improve consumption

Factors	Effect on FC
Lubrication (Low viscosity motor oil)	-3.8%
Lower rolling resistance (By 10 - 20%)	-2.1%
Low tire pressure (By 0.2 bar)	1.4%
Other (Poor maintenance, etc.)	4.3%

Operational load (weight)

- Rolling-resistance
- Air drag (in case of roofboxes, treilers, conteiners)
- Driving behavior -> slower driving compensates increases

Factors	Effect
Vehicle mass (100 kg)	5.5%
Trailer towing	55.5%
Roof boxes (mass-aerodynamics incr.)	17.2%

Road conditions - morphology

- Variations during the trip
- Variations according to time

Factors	Effect
Altitude	-3.1%
Grade	17.5%
Road surface (roughness-texture- material)	1.9%
Traffic condition (congestion)	26.0%

Fuel characteristics

- Winter summer diesel variations, limited sources on effects
- Biofuels contain less energy per volume of fuel

Factors	Effect on FC
B10 compared to B0	1.1%
E10 compared to E0	3.9%

Conclusions

- A significant number of factors affect fuel consumption
- Driving habits and conditions depending on the region
- Difficulty in isolating impacts of each individual factor
- A combination of factors sum up to the final consumption
 - It is virtually impossible to assign a specific fuel consumption to any given vehicle hence a difference between reported and experienced values will always exist
- Difficult for any type approval test to assess all the factors introduction of WLTP is expected to produce more realistic values
- Additional actions can help alleviate unnecessary fuel consumption, optimize energy consumption

Current and future work

- An analysis on the combined effect of different factors via Vehicle simulation
- Examination of the effect of each factor over a base case scenario
- Examination of a combination of various factors over different operation scenarios

Questions?

Suggestions?

Comments?