Novel CCU Technologies A SAPEA Report

Marco Mazzotti, ETH Zurich

DG Clima Workshop

Brussels – September 17th, 2018

Outline

- 1. The CCU system
- 2. RES efficiency in delivering energy services
- 3. Carbon balances of technology chains
- 4. Innovation needed

CCU POTENTIAL IN EU TO SUPPORT:

- climate change objectives;
- circular economy (O- vs. L-economy);
- energy security and RES deployment;
- evolution of CO₂ capture systems.

WG VIEW: SOCIETAL SERVICES

- power generation and distribution;
- fuels (and power) for transport;
- long-term long-range RES storage;
- industrial products and materials.

CCU POTENTIAL IN EU TO SUPPORT:

- climate change objectives;
- circular economy (O- vs. L-economy);
- energy security and RES deployment;
- evolution of CO₂ capture systems.

WG VIEW: SOCIETAL SERVICES

- power generation and distribution;
- fuels (and power) for transport;
- long-term long-range RES storage;
- industrial products and materials.

CCU POTENTIAL IN EU TO SUPPORT:

- climate change objectives;
- circular economy (O- vs. L-economy);
- energy security and RES deployment;
- evolution of CO₂ capture systems.

Functional unit 1:

- fossil-fuel-fired power plant
- large scale industrial boiler for heat generation
- chemical plant coupled to incinerator for C-rich waste disposal (polymeric materials)

Functional unit 2: C-use and <u>distributed</u> CO₂ emissions

Functional unit 1:

- fossil-fuel-fired power plant
- large scale industrial boiler for heat generation
- chemical plant coupled to incinerator for C-rich waste disposal (polymeric materials)

Functional unit 2:

- urea production and use
- fuels (cars, ships, planes) synthesis and use
- chemical plant not-coupled to incinerator, or to incinerator without CO₂ capture

Functional unit 2: distributed CO₂ emissions

Functional unit 2: distributed CO₂ emissions

- → Fossil (reduced) carbon
- \longrightarrow Oxidized carbon (CO₂)
- Synthetic (reduced) carbon
- → Biogenic (reduced) carbon
- Renewable energy source
- CO₂ in the atmosphere

Post-combustion CO₂ capture (PCC)

Direct air capture of CO₂ from the atmosphere (DAC)

Underground CO₂ storage

CO₂ conversion plant, incl. electrolyzer for H₂

Managed biomass growth

3. L-economy w/ CCS

Functional unit 1: point source CO₂ emissions

- → Fossil (reduced) carbon
- Oxidized carbon (CO₂)
- Synthetic (reduced) carbon
- → Biogenic (reduced) carbon

Renewable energy source

CO₂ in the atmosphere

Functional unit 2: distributed CO₂ emissions

Post-combustion CO₂ capture (PCC)

Direct air capture of CO₂ from the atmosphere (DAC)

Underground CO₂ storage

CO₂ conversion plant, incl. electrolyzer for H₂

Managed biomass growth

Functional unit 1: point source CO₂ emissions

- Fossil (reduced) carbon
- → Oxidized carbon (CO₂)
- Synthetic (reduced) carbon
- → Biogenic (reduced) carbon
 - \$1

Renewable energy source

Functional unit 2: distributed CO₂ emissions

Post-combustion CO₂ capture (PCC)

Direct air capture of CO₂ from the atmosphere (DAC)

Underground CO₂ storage

CO₂ conversion plant, incl. electrolyzer for H₂

Managed biomass growth

Functional unit 1: point source CO₂ emissions

- → Fossil (reduced) carbon
- → Oxidized carbon (CO₂)
- Synthetic (reduced) carbon
- → Biogenic (reduced) carbon

Renewable energy source

CO₂ in the atmosphere

Functional unit 2: distributed CO₂ emissions

Post-combustion CO₂ capture (PCC)

Direct air capture of CO₂ from the atmosphere (DAC)

Underground CO₂ storage

CO₂ conversion plant, incl. electrolyzer for H₂

Managed biomass growth

Functional unit 1: point source CO₂ emissions

 \longrightarrow Oxidized carbon (CO₂)

Synthetic (reduced) carbon

→ Biogenic (reduced) carbon

Renewable energy so

CO₂ in the atmosphere

Functional unit 2: distributed CO₂ emissions

Post-combustion CO₂ capture (PCC)

Direct air capture of CO₂ from the atmosphere (DAC)

Underground CO₂ storage

CO₂ conversion plant, incl. electrolyzer for H₂

Managed biomass growth

Functional unit 1: point source CO₂ emissions

 \longrightarrow Oxidized carbon (CO₂)

Synthetic (reduced) carbon

→ Biogenic (reduced) carbon

1

Renewable energy source

CO₂ in the atmosphere

Functional unit 2: distributed CO₂ emissions

Post-combustion CO₂ capture (PCC)

Direct air capture of CO₂ from the atmosphere (DAC)

Underground CO₂ storage

CO₂ conversion plant, incl. electrolyzer for H₂

Managed biomass growth

A FEW COMMENTS

- C-free RES to be LCA-assessed;
- CCU neither sufficient nor needed for Oeconomy, while CO₂ capture needed;
- CO₂ storage necessary for NETs;
- full LCA needed to allocate CO₂ emissions to stakeholders.

A FEW COMMENTS

- C-free RES to be LCA-assessed;
- CCU neither sufficient nor needed for Oeconomy, while CO₂ capture needed;
- CO₂ storage necessary for NETs;
- full LCA needed to allocate CO₂ emissions to stakeholders.

SIMPLIFIED SYSTEM ANALYSIS

- the whole technology chain, incl. RES,
 CO₂ source, product, C-waste release;
- Carbon and energy balances around the system boundaries;
- infrastructure and land use needs;
- deployment current and projected scale.

4. Innovation needed

- 1. Policy perspective Measures, regulations and incentives should examine the energy system, including CCU, in a holistic, integrated, coordinated and transparent manner.
- 2. Systemic perspective A system approach is required when evaluating the energy system and its CCU sub-systems; progress is needed, in terms both of stakeholder awareness and of consistent definitions of system boundaries and of reference datasets.
- 3. Technology perspective There are scientific and technical challenges in the areas of:
 - 1. collection and purification of CO₂ from different sources;
 - 2. synthesis of green-hydrogen via water splitting powered by RES;
 - 3. reductive activation catalytic technologies for CO₂ conversion to fuels and chemicals.