

ETS Compliance Conference – 13 November 2018
Identification and analysis of promising
carbon capture and utilisation technologies
Overview of the study for the
European Commission DG CLIMA

CONTENT OF THE PRESENTATION

- I. Introduction to CCU
- II. Overview of study tasks

III.Findings

- I. Technology assessment
- II. Climate and energy assessment
- III.Possible eligibility criteria under ETS Innovation Fund
- IV. Market and societal assessment
- V. Regulatory assessment

IV. Conclusions

INTRODUCTION TO CCU WHAT ARE CCU TECHNOLOGIES?

Carbon Capture and Utilization (CCU) refers to technologies and processes which use carbon dioxide as a component of a carbon dioxide compound in materials or energy sources, thus rendering the carbon dioxide useful.¹

CCU processes involve:

- capture and compaction of CO₂
- its transport (if necessary)
- functional utilization of the CO₂
- also end of life needs to be taken into account in a circular approach

Excluded related processes are:

- CCS (generally)
- EOR/EGR (generally)
- Not novel processes
- Fine chemicals

¹ von der Assen et al. 2013

OVERVIEW OF STUDY TASKS

TASK 1
TECHNOLOGIES
ASSESSMENT

T1.1 Technology assessment

T1.2 Technical, economic, climate and energy assessment

T1.3 Market barriers, impacts and opportunities

TASK 2 REGULATORY ASSESSMENT

T2.1 Analysis of the current regulatory setup

T2.2 Developing options

T2.3 Assessing impacts

TASK 3 STAKEHOLDER ENGAGEMENT

Survey of companies

Interviews/ written consultation

Task workshops

Open public event

CONCLUSIONS

PRESENTATION OF FINDINGS

TECHNOLOGY ASSESSMENT TECHNOLOGY SHORTLIST

Product	Abbreviation
Biological	
Ethanol	EtOH
Methane	Methane
Chemical hydrogenative	
Ethylene	Ethylene
Methane	Methane
Methanol	Methanol
Monooxymethylether (OME1)	OME1
Polyethylene (PE)	PE
Polyoxymethylene (POM)	POM
Polypropylene (PP)	PP
Propylene	Propylene
Synthetic fuels	Fuels
Chemical non-hydrogenative	
Polycarbonate (BisA-PC)	BisA-PC
Polyols for Polyurethane (PU) foams production	PU
Inorganic	
Calcium carbonate	CC
Sodium carbonate	SC

CLIMATE AND ENERGY ASSESSMENT CCU AT A GLANCE

CO2 reuse can close the carbon cycle

Measuring GHG emission mitigation from CCU

Comparative LCA of production processes

- CO2 based production process vs. conventional process.
- Various CO2 sources (biogenic, non biogenic, air)
- Process routes representative for the EU

Indicators

- Global Warming Impact [kgCO2 equivalents equivalents /kg product]
- Raw Material Input [kg raw material equivalent /kg product]
- Cumulative Energy Demand [MJ energy equivalents /kg product]
- Water input [kg water /kg product]

Scenarios

- Spatial variation (transport routes for chemicals favorable)
- Intersectoral use (methane use for transport or base chemical)
- Energy supply (renewable energy amount necessary)

LCA results: Global Warming Impact (GWI)per energy source Example: methane and methanol

LCA results: Raw Material Input (RMI)

Measuring GHG emission mitigation from CCU: What did we learn?

- Only production-phase GHG differ: use-phase, CO2 retention time, and end-of-life are not relevant, except in ETS reasoning.
- Higher raw material requirements and cumulative energy demand than conventional routes.
- Use of renewable energy is determinant for net reduction of carbon emissions.
- CCU can help circular economy of carbon in chemical industry, where carbon is needed.

POSSIBLE ELIGIBILITY CRITERIA FOR CCU-PROCESSES IN THE ETS INNOVATION FUND

Criteria

- Contribution to climate and resource policy goals
- A minimum of climate footprint savings (in %) compared to the conventional reference.

Methods

- Climate footprint savings need to be relatively higher than additional raw material requirements
- Cradle-to-gate LCA to determine environmental impacts
- Comparison between CCU-product and conventional reference
- Integration of renewable energy supply

Indicators

- Global Warming Impact (GWI)
- Raw material input (RMI)
- Normalized GWI and RMI

MARKET AND ECONOMIC ASSESSMENT

Market and economic considerations: Challenges:

- Competition with fossil resources and fossil energy.
- Competition for renewable energy.
- Dependency on policy support (fuels).
- Risk of mismanagement of public and private investments in CCU.

Opportunities:

- European technological advantage.
- Access to new markets is usually not necessary, products are the same.
- Cross-sectoral collaborations (industrial symbiosis).
- Reduction of dependency on import of fossil resources.

REGULATORY ASSESSMENT MAPPING OF LEGISLATION

Climate and energy	Products and labelling	Waste and circular economy	Environmental pollution	Environmental risk	Environmental impact assessment
Emission Trading System	Ecolabel	Action Plan for CE	Industrial Emissions	Major Accident Hazards	Strategic IA
Monitoring and Reporting	Construction Products	Plastics Strategy	REACH	Environmental Liability	Environmental IA
Accreditation and Verification		Waste Framework	Extractive Waste		
Benchmarking			EPRTR		
Energy Efficiency			Persistant Organic Pollutions		
Renewable Energy			Water Framework		
Fuel Quality			Groundwater Protection		
Carbon Capture and Storage					
Effort Sharing					
Land Use, LU Change and Forestry					

REGULATORY ASSESSMENT PRODUCT CLUSTERS / LEGISLATION

Climate and energy	Products and labelling	Waste and circular economy	Environmental pollution	Environmental risk	Environmental impact assessment
Emission Trading System	Ecolabel	Action Plan for CE	Industrial Emissions	Major Accident Hazards	Strategic IA
Monitoring and Reporting	Construction Products	Plastics Strategy	REACH	Environmental Liability	Environmental IA
Accreditation and Verification		Waste Framework	Extractive Waste		
Benchmarking			EPRTR		
All clusters Energy Efficiency		Polymers, Minerals	Persistant Organic Pollutions		
Renewable Energy)		Water Framework		
F Fuels y			Groundwater Protection		
Carbon Capture and Storage					
Effort Sharing					
Land Use, LU Change and Forestry					

Legend:

REGULATORY ASSESSMENT

CCU and the EU ETS:

- EU ETS recognises CCU but does not incentivise CO2 capture except for geological storage.
- Capturing installations must still report used CO2 as emitted.

Risk of loophole:

- CCU processes capture CO2 temporarily, CO2 is re-emitted after use or disposal.
- ETS sector coverage is limited, the rest is under Effort Sharing.
- Risk to the environmental integrity of the ETS: carbon emissions may go unreported when transferred outside of the scope of the ETS.
- ETS MRV not equipped to monitor CCU.

REGULATORY ASSESSMENT

Reforming the ETS?

- Options for accurate MRV of CCU seem costly.
- Is ETS the right tool?

However, financing becoming available:

- CCU will be financed by ETS Innovation Fund.
- Other EU financing programmes could synergetically finance CCU:
 - Horizon 2020
 - European Fund for Strategic Investments
 - European Structural Investment Funds
 - Research for Coal and Steel Fund

Other support mechanisms exist:

 Renewable Energy Directive II recognises CCU fuels from renewable energy and recycled carbon fuels under certain conditions

KEY CONCLUSIONS

- CCU needs support to be viably developed and deployed.
- Each CCU project must prove environmental benefits.
- CCU climate mitigation potential limited by available renewable energy, but contributes to circular economy (closing the carbon cycle), replacing fossil feedstocks and reducing fossil imports.
- CCU projects cut across sectors (industrial symbiosis).
- CCU fuels can store renewable energy otherwise curtailed.

THANK YOU

Contact:

Samy Porteron
Consultant
samy@ramboll.com

