

Support for the revision of Regulation (EC) No 443/2009 on CO₂ emissions from cars

Service request #1 for Framework Contract on Vehicle Emissions - No ENV.C.3./FRA/2009/0043 Richard Smokers, Filipe Fraga, Maarten Verbeek

Stakeholder Meeting, Brussel, December 6, 2011

Objective

- Assist European Commission with carrying out review clauses in Regulation (EC) No 443/2009 to reduce the CO₂ emissions from passenger cars
 - > defining the modalities of reaching, by the year 2020, a long-term target of 95g/km in a cost-effective manner
 - > implementation aspects including excess emissions premium
 - review availability of data on footprint and its use as utility parameter for specific emissions target

Construction of cost curves for passenger cars in 2020

- Potential and costs of CO₂ reducing technologies
- Construction of cost curves for 2020
- Alternative costs curves / scenarios

Cost and potential of CO₂ reduction options for the longer term

- Quantification of costs and reduction potential of technical options to reduce CO₂ emissions in passenger cars on petrol and diesel
 Collection of data from:
 - > Recent literature, in-house expertise
 - > Automotive manufacturers, suppliers and trade associations
 - Detailed questionnaire + consultations
 - Consolidation of data set
- > Electric and plug-in vehicles modelled separately
 - In collaboration with recent study by CE Delft / ICF / Ecologic

Construction of cost curves for 2020

Combine compatible options into packages:

$$E_{package} = E_{baseline} \times \prod_{i=1}^{n} (1 - \delta_i)$$

Subtract "safety margin" to avoid overestimation of combined reduction potential of options targeting the same energy loss

n

$$C_{package} = \sum_{i=1}^{N} C_i$$

> Safety margin assumed to increase linearly with reduction potential:

- > maximum value
 - > 15% for petrol cars
 - > 5% for diesel cars
- based on available simulations from Ricardo + extrapolation of existing advanced vehicles + expert judgement

Definition of cost curves for 2020 - petrol

- > Additional manufacturer costs as function of reduction percentage
- 6th to 9th order polynomials necessary to describe non-linearity of cost curve

Definition of cost curves for 2020 - diesel

- Additional manufacturer costs as function of reduction percentage
- 5th to 6th order polynomials necessary to describe non-linearity of cost curve

Cost curves for 2020 - overview

y	=	\sum	a_i	•
		<i>i</i> =1		

	a9	a8	a7	a6	a5	a4	a3	a2	a1	End %	End€
p,S				8.134E+05	-9.302E+05	3.859E+05	-6.922E+04	1.319E+04	6.453E+02	60.1%	5870
p,M				1.207E+06	-1.386E+06	5.381E+05	-7.426E+04	9.017E+03	9.985E+02	61.1%	6775
p,L	9.431E+07	-2.233E+08	2.180E+08	-1.121E+08	3.226E+07	-5.187E+06	4.602E+05	-1.672E+04	1.574E+03	61.9%	8265
d,S					2.193E+05	-1.757E+05	5.709E+04	9.584E+01	1.657E+03	53.0%	4711
d,M					4.147E+05	-3.757E+05	1.308E+05	-9.708E+03	2.151E+03	53.0%	5571
d,L				-1.549E+05	1.069E+06	-8.804E+05	2.701E+05	-2.236E+04	2.585E+03	52.8%	6946

2015 cost curves from TNO/IEEP/LAT 2006

- > also used in IEEP/CE Delft/TNO 2007
- indicative 2020 cost curves from AEA/CE Delft/TNO/Öko 2009

> For petrol lower costs than 2009 study for high reduction levels

For diesel lower costs than 2009 study over entire range

Scenario variants

- In the course of the study two issues arose that justified critical evaluation of the cost curves as presented before:
 - Observed progress in CO₂ reduction in European new passenger car fleet in the 2002-2009 period
 - Technical data becoming available from EPA studies in support of the US legislation on CO₂ emissions from light duty vehicles
- These data seem to suggest that the costs of reducing CO₂ emissions in passenger cars could be lower than estimated in this study.
- As detailed assessments were not possible within scope of study and given limited availability of data, it was decided to deal with these issues in the form of scenarios
 - **a)** Alternative accounting for progress observed in 2002-2009 period
 - **b)** Alternative cost curves based on a modified technology table
 - **c)** Combination of a) and b)

Scenario a) Alternative accounting for progress observed in the 2002-2009 period

Variant including additional reduction step based on assumption that part of the reductions achieved in the 2002-2009 period are to be attributed to other causes than application of technologies as included in the technology tables:

- > technical options not included in cost curves
- In effects of optimising the powertrain calibration by improving tradeoffs against other parameters
- > possible utilization of flexibilities in the test procedure
- Based on detailed comparison of base models in 2002 and 2010 and of average reductions per segment the following additional reduction potentials were chosen for the scenario analysis:
 - > petrol: 10%
 - > diesel: 9%

Scenario a) Alternative accounting for progress observed in the 2002-2009 period

Scenario b) Alternative cost curves based on a modified technology table

- Available results from EPA studies in support of US CO₂ target for passenger cars provide strong indications that costs for meeting the EU 95 g/km target for 2020 could be lower than the estimates based on the cost curves from this study.
- Due to large differences in technology definitions, baseline vehicles and drive cycles, however, the direct use of EPA data for the European assessment was considered not appropriate.
- To test the possible impact of the most striking differences between US and EU data a selection of data derived from the EPA studies, specifically for full hybrids and the various levels of weight reduction, has been used to construct a modified technology table. Alternative cost curves have been constructed on the basis of this table.
- More in-depth assessment needed as soon as complete EPA data are available.

Scenario b) Alternative cost curves based on a modified technology table

Petrol

- EPA data for 2020 considered applicable to EU 2020

- DCT brings AT to efficiency level of 5sp MT.
- DCT is 10% (8 -13%) more efficient and \$170 cheaper than 4sp AT
- no additional potential for moving from 5sp MT to 6sp DCT
- 2002-08 progress: 9% for €100

Conclusions wrt cost curves

- Cost curves created for 2020, which, compared to cost curves for 2015:
 - > show lower costs for same reduction
 - > provide larger reduction potential at higher costs
 - > show stronger non-linearity
 - marginal costs more strongly increasing at higher reductions
- Scenario variants created to assess possible impacts of indications that costs for meeting 2020 may be lower than expected from SR1 cost curves

Assessments with respect to the attainability of the 2020 target

Current state-of-the-art technologies

Compatibility of model cycles

Current state-of-the-art technologies for passenger cars

innovation

- Many options included in the technology tables are already applied in the market today, especially in so-called "eco-models"
- A review has been carried out to identify and analyse the lowest emitting vehicles on the market in the B-, C- and D-segments compared to equivalent 'standard' models
- Large variation found in price and CO₂ emission differentials, also relative to estimates based on technology tables
 Pricing strategies possibly affected by tax regimes

> Costs of technologies can not be derived from available price information

Evaluation of model cycles

> Product development process can vary from 18 months to up to 5 years

- On average vehicle models have a platform change every 6 8 years
 are refreshed with face-lift 2-4 years after a platform change
- ▶ Engine platforms have a long lifespan, typically 10 15 years
 - > during that time will have minor or major upgrades and additional variants added
- The analysis indicates that OEM development cycles are well timed to meet planned introduction dates of noxious emissions but currently less aligned to the planned 95 g/km CO₂ target in 2020
 - > potential need for 95 g/km CO₂ legislation to be finalised as early as possible and as a minimum 5 years before its implementation date
 - will provide certainty for OEMs and enable them sufficient time to consider it in their vehicle and engine cycle plans whilst they are not heavily detailed and the product development processes are not yet underway
 - > but tension does not appear insurmountable

Evaluation of alternative utility parameters and different types of utility-based limit functions

Mass and footprint

- > Other alternative utility parameters (see report)
- Linear and alternatively shaped limit functions

Method of determining the 100% slope utility-based limit functions

Mass as utility parameter

- Significant progress from 2006 2010
- 100% slope limit function is already quite flat
- > Floor and ceiling can not be defined in a meaningful way
 - Unrealistic values needed to affect significant number of vehicles

Reference mass

- + Easily / objectively measured
- + Accepted by industry
 - > continuation of present system
 - > (part) of industry seems in favour of using mass also for 95 g/km
- + Good correlation with CO₂
- 0 ..
- Not a measure of utility
- Possibilities for gaming depend on slope of limit function
 - > 100% slope for 95 g/km target is flatter than 60% slope for 130 g/km target
 - Lower slope may lead to difficulty in meeting target for manufacturers of large cars (larger share of total reduction potential used)
- Easy options for gaming: "Brick in the boot"
- Makes weight reduction as CO₂ reduction measure less attractive
 - > unless limit function is continually updated on basis of changing average mass
 - but effect of applying weight reduction measures may be masked by autonomous mass increase...

Footprint as utility parameter

- Footprint also has good correlation with CO₂
- > Floor and ceiling can not be defined in a meaningful way
 - > Unrealistic values needed to affect significant number of vehicles

🛋 innovation for life Footprint (wheelbase x track width) Easily / objectively measured Better proxy for utility than mass + > See # of seats + trunk volume: true utility may not provide a solid basis for CO_2 differentiation Used in US legislation + Gaming is considered relatively difficult due to required changes in structural design of vehicle and associated consequences for mass and vehicle CO₂ emissions > Footprint is not necessarily better than weight with respect to avoiding all possibilities of perverse incentives, but possibilities of cheap gaming options are much reduced. > Possible impact of changing footprint on CO_2 is weaker than for mass so does not provide better threshold against gaming or perverse incentives than mass. But the scale of the perverse incentives appears much less as utility can only be increased by effectively increasing the size of the vehicle, with all the cost and complexity that that entails, and resulting in what is essentially a different vehicle. > Also, incremental increases in footprint result in proportionately smaller increases in CO_2 emissions than increases in weight, so the adverse environmental impact is less. Good correlation with CO_2 + 0 Relatively tough on compact / high cars (e.g. MPVs) May promote tendency towards larger cars This can be compensated by adjusting limit function for growth in average footprint.

Conclusions on utility parameters and limit function

- > Main options for utility parameter:
 - > mass and footprint
 - > both to be used for detailed cost assessment
- Limit function
 - > Floor and ceiling can not be defined in a meaningful way
 - > Unrealistic values needed to affect significant number of vehicles
 - > No reason to move away from linear limit function

Assessment of average additional vehicle costs per manufacturer for manufacturer-based modalities

- > Average costs for meeting target
- Distributional impacts
- > Marginal costs
- Impact of marketing EVs and PHEVs
- Impact of scenarios with alternative cost curves

Aspects of the cost assessment

- Separate assessments for mass and footprint
 - > For linear utility-based limit functions with different slopes

- > Assessment of:
 - > Average costs for meeting the target
 - > Distributional impacts, i.e. costs per manufacturer
 - > Absolute additional manufacturer costs per vehicles
 - > Relative retail price increase
- > Calculate cost differential relative to reference situation
 - > 2009, based on database
 - > 2020, with manufacturers maintaining individual targets under 130 g/km legislations between 2015 and 2020
 - > Cost for meeting 130 g/km in 2020 based on 2020 cost curves
- > Impact of introducing (PH)EVs

Cost assessment model for passenger cars

- > All relevant manufacturer groups included
- > Sales divided over 6 segments: petrol / diesel x small / medium / large

- Cost assessment methodology
 - > Calculate target per manufacturer group
 - Account for effects of possible autonomous mass increase
 - Determine distribution of reductions that meets target at lowest additional manufacturer costs
 - Calculate cost differential relative to reference situation
 - > 2009, based on database
 - 2020, with manufacturers maintaining individual targets under 130 g/km legislation between 2015 and 2020
 - > Cost for meeting 130 g/km in 2020 based on 2020 cost curves

Distributional impacts – mass – 95 g/km in 2020

- Porsche not able to meet its 2020 target
- Problem for Tata with small slope values

٠

Distributional impacts – mass – 95 g/km in 2020

- > Higher absolute costs for larger vehicles
 - > But relative price increase largest for small vehicles

• Absolute manufacturer cost increase per manufacturer compared to the situation in which the 130 g/km legislation is maintained between 2015 and 2020.

Distributional impacts – footprint – 95 g/km in 2020

- > Porsche + Tata not able to meet their 2020 targets
- > Problem for Chrysler with small slope values

Distributional impacts – footprint – 95 g/km in 2020

innovation for life

- > Higher absolute costs for larger vehicles
 - > But relative price increase largest for small vehicles

> Costs for large vehicles slightly higher than in case of U = mass

Conclusions on costs and distributional impacts

- > Cost of meeting 95 g/km (additional manufacturer costs):
 - > ~1750 €/vehicle relative to maintaining 130 g/km between 2015-2020

- > equivalent to ~11% relative price increase
- > ~2190 €/vehicle relative to 2009
- Costs for footprint-based target marginally (10 €) higher than for mass
 - Result of different distribution of efforts
 - Reduced effect of weight reduction in case of U = mass is not accounted for in cost curves => see next slides
- > For footprint more manufacturers run risk of hitting ceiling of cost curves
- Distribution of relative price increase more even for slopes < 100%</p>

1st order estimate of effect of reduced cost effectiveness of weight reduction in case of mass as utility parameter

Reduction in distance to target is less then CO₂ reduction

1st order estimate of effect of mass as utility parameter on cost for meeting target

Amended cost curves reflecting reduced effectiveness of weight reduction for

U = mass start to deviate from original cost curves in region of required reduction

levels for meeting 2020 target

Average costs for meeting 95 g/km target with 100% slope increase from
 € 2188 to € 2249 (difference € 61)

Marginal costs – implications for excess premiums

Excess premium can be based on marginal costs of meeting target
95 € per g/km could be maintained beyond 2020

Impact of introducing (PH)EVs

Utility parameter = mass	Baselin	0							Scena	rio 4
Slope = 100%	scenari	0	Scena	irio 1	Scena	ario 2	Scena	ario 3	(TNO)	
Scenario characteristics										
Sales share FEVs	0.0%		0.8%		0.3%		1.7%		10.0%	
Sales share PHEVs	0.0%		3.4%		1.8%		6.2%		0.0%	
Sales share EREVs	0.0%		1.2%		0.5%		2.3%		0.0%	
Total sales share EVs	(0.0%		5.5%		2.7%		10.2%	-	10.0%
Average CO ₂ emissions per EV [g/km]		-		48		45		47		0
Scenario impact on ICEVs										
Sales share of ICEVs	1	00%	!	94.5%		97.3%		89.8%	9	90.0%
Average ICEV emissions to reach 95 g/km [g/km]		95		97.7		96.4		100.5		105.6
Results										
Average additional manufacturer cost per EV [€]		-		5302		5186		5358		8323
Average ICEV costs to meet target ICEV [€]		2188		1952		2061		17 4 1		1420
Average overall costs to meet 95 g/km target [€]	:	2188		2136		2145		2110		2111

innovation

Cost = absolute manufacturer cost increase relative to 2009 reference situation

> Cost savings on ICEVs outweigh additional costs of (PH)EVs

- > 95 g/km target provides (small) net incentive for marketing (PH)EVs
- > Super credits:

- In further increase the fleet-wide WTW CO₂ emission relative to situation without (PH)EVs
- > do not seem necessary as additional stimulation measure

Impact of scenarios with alternative cost curves

> a) Alternative accounting for progress observed in 2002-2009 period

innovation

- b) Alternative cost curves based on a modified technology table with data from EPA studies
- > c) Combination of a) and b)

		Additional m	Additional manufacturer cost relative to 130 g/km target [€]										
Utility parameter	Slope	based on 2020 cost curves	based on "Scenario a)"	based on "Scenario b)"	based on "Scenario c)"								
	60%	1748	1159	1280	765								
Mass	100%	1750	1158	1277	760								
	60%	1754	1164	1290	775								
Footprint	100%	1760	1168	1294	772								

Scenario a) and b) lead to ~ 500 - 600 € lower costs

- Scenario c) leads to ~ 1000 € lower costs
- Results for the scenarios a) to c) would change the conclusion from the assessment of impacts of introducing EVs by 2020.

Conclusions wrt modalities including results of cost assessments

Choice of utility parameter

Mass vs footprint

Reference mass	
Pros	Cons
Easily / objectively measured	Not a direct measure of utility
Accepted by industry (continuity with current legislation)	Possibilities for gaming depend on slope of limit function
Good correlation with CO ₂ emissions	Easy options for gaming: "Brick in the boot"
	Makes weight reduction as CO ₂ reduction measure much
	less attractive

Footprint	
Pros	Cons
Easily / objectively measured	Relatively tough on compact / high cars (e.g. MPVs)
Gaming is considered relatively difficult due to required changes in structural design of vehicle and associated consequences for mass and vehicle CO ₂ emissions	May promote tendency towards larger cars unless compensated for such autonomous footprint increase
Better proxy for utility than mass	
Used in US legislation	
Good correlation with CO ₂ emissions	

> No arguments to favour one over the other from assessments of

- > average costs and distributional impacts
- impact of (PH)EVs
- > impact of additional provisions

Choice of utility parameter

Mass vs footprint

Arguments in favour of footprint

- Mass reduction will be an important measure for future CO₂ reduction beyond 130 g/km. Mass as a utility parameter makes this option unattractive.
- Since footprint is a much better proxy for vehicle size and resulting utility than mass, footprint seems favourable from a consumer perspective.
- Consistency with US legislation

Limit function

No reason to move away from linear limit function

Slope of limit function

- > 100% slope for 2020 is flatter than 60% slope for 2015
 - So no flattening needed to counteract gaming with mass
- Flatter slope could be justified for reason of equalising burden over manufacturers and segments

Questions

Conclusions regarding possible additional measures and provisions

- Combined target for passenger cars and vans
- Stepwise approach to target
- Mileage weighting
- Additional vehicle-based target

Impacts of a combined target for passenger cars and vans - footprint

Consequences of establishing a trajectory of declining annual target values from 2015 to 2020

- Avoids additional total fleet CO₂ emissions due to late approach towards 2020 target
 - Effect < 3%, but still equivalent to increasing target by 3 g/km</p>
- > Enhances probability of manufacturers meeting their 2020 targets
- > But requires banking and borrowing to create sufficient flexibility

Consequences of introducing provisions for banking and borrowing

> Total impact on the CO₂ emission in 2015-2040 is small

- Borrowing CO₂ credits prior to banking increases the net costs of meeting the target averaged over a longer time period
 - Allowing banking does not create incentive to postpone reductions
- To reduce risks a maximum amount of borrowed CO₂ credits can be considered.

Consequences of mileage weighting

Requires relations between lifetime mileage and utility

- Separate for petrol and diesel
- > Possibly per manufacturer
- > How to establish undisputable numbers?
- > Can be based on

Vehicle type	Lifetime mileage [km]
PCDL	444,662
PCDM	362,316
PCDS	379,465
PCGL	300,347
PCGM	285,222
PCGS	250,952

innovation

Based on FLEETS

- > existing utility-based limit curve (derived from sales-weighted fit) or
- Imit curve derived from sales + mileage weighted fit
- Mileage weighting
 - > makes net lifetime GHG emissions from new cars insensitive to way in which manufacturers choose to divide reduction efforts over models / segments
 - > can improve efficiency in reaching EU GHG emission targets
- More study needed
 - > Consequences of using a limit function based on mileage weighting

Assessment of impacts of additional vehiclebased CO₂ limit

Assessment of impacts of additional vehiclebased CO₂ limit

innovation

- Vehicle-based CO₂ limits in addition to sales-average target
 - > With buy-out premium for vehicles sold that exceed limit
- > Feasible to incorporate into emissions reduction legislation
- Could make a useful contribution towards achieving the overall 95 gCO₂/km target
- > Of options considered a linear sloped limit is most cost effective

Conclusions with respect to additional issues affecting the impacts of CO₂ legislation for passenger cars

- > CO₂ emissions of various life-cycle aspects
- Rebound effects
- Note on costs and prices

CO₂ emissions of various life-cycle aspects

Contribution of different life cycle phases to the total life cycle GHG emissions

gCO, eq./km

tonne CO₂ eq./vehicle

Efficiency improvements due to CO₂ legislation more than outweigh

additional emissions from manufacturing phase

Light-weight materials do not increase CO₂ emissions from vehicle production

CO₂ emissions of various life-cycle aspects

Contribution of different life cycle phases to the total life cycle GHG emissions (tonne CO₂ eq./vehicle)

- For HEVs, PHEVs and BEVs emissions from production are significantly higher: 5 to 20 g CO₂ eq./km for BEVs
 - But increase is outweighed by reduction in use phase, especially of renewable electricity is used

- > Elasticity of fuel consumption with regard to fuel price (literature):
 - > -0.25 (ST) to -0.6 (LT)
- A 27% improvement of fuel efficiency (1 95/130) leads to 22.1%
 (ST) and 15.2% (LT) due to the rebound effect of lower cost of fuel
- Based on analysis of TREMOVE runs the combination of improved fuel efficiency and a price increase of 11% may lead to 1 - 2% additional fuel saving (positive knock-on consequence)

Summary of note on costs and prices

Additional costs for CO₂ reducing technologies are calculated relative to an "all-else-remaining-equal" baseline.

innovation

- How these costs affect prices depends on ways in which manufacturers are able to pass through these costs.
- Whether pass through of costs leads to net increase in real car prices depends on baseline price development upon which increases are superimposed.
 - > Multitude of factors determine baseline price development
 - Manufacturers can influence baseline in response to CO₂ legislation
- Fact that average car prices appear to have declined in real terms over the last years does not provide evidence that ex ante assessments overestimated the costs for meeting the 130 g/km target.
 At the same time there is also no proof of the contrary.

Contact info

Richard T.M. Smokers – lead consultant

- Mail: richard.smokers@tno.nl
- Tel. +31-88-86 68628

Jordy Spreen – project manager

- Mail: jordy.spreen@tno.nl
- Tel. +31-88-86 61163

Additional slides

Consortium

TNO innovation for life	 ✓ CO₂ and pollutant emissions from LD and HD vehicles ✓ potential and costs of technical options for reduction of CO₂ and pollutant emissions ✓ vehicle testing and development of test procedures ✓ development of engine, power train and exhaust aftertreatment technology
RICARDO	 ✓ engine, powertrain and exhaust aftertreatment design and development ✓ performance and costs of technical options for reduction of CO₂ and pollutant emissions ✓ advanced automotive technology research and development ✓ technology roadmapping and technical market assessment
GLOBAL INSIGHT	 ✓ automotive market history and forecasts at make/model/powertrain/CO₂ level ✓ automotive technology history and forecasts ✓ alternative fuels research ✓ EU automotive market and automotive industry economics

Consortium

Institua Kir Biologia und Bolitäk Grabit	 data collection and analysis in successive projects for the Monitoring Mechanism (Decision 1753/2000/EC)
TRANSPORT & MOBILITY LEUVEN Your link to integrated analyses !	 modelling of environmental and economic impacts of policy measures using TREMOVE and other models welfare analysis, cost-benefit analysis
CE Delft	 environmental impacts of transport policy analysis and policy development economic and cost/benefit analysis
AEA	 environmental impacts of transport vehicle technology assessment theoretical assessment of powertrain and non-powertrain technologies economic and cost benefit analysis alternative fuels research

Reduction technologies for petrol cars in 2020

TRANSPORT & MOBILITY LEUVEN

innovation for life

Your link to integrated analyses !

Technology options for petrol cars		Sm	all	Med	ium	Large		
Descri	ption	Reduction potential [%]	Cost [€]	Reduction potential [%]	Cost [t]	Reduction potential [%]	Cost [€]	
	Gas-wall heat transfer reduction	3	50	3	50	3	50	
	Direct injection, hormgeneous	4.1	180	5	180	5.5	180	
l	Direct injection, stratified charge	8.5	400	9	500	9.5	600	
a de la compañía de	Thermo dynamic cycle imporvements e.g. split cycle, PCCI/HCCI, CAI	13	475	И	175	15	500	
19	Mild downsizing (15% cylinder content reduction)	4	200	5	250	6	300	
ja j	Medium downsizing (30% cylinder content reduction)	7	400	8	435	9	510	
18 18	Strong downsizing (>=45% cylinder content reduction)	16	5 50	17	ഞ	18	700	
	Camphasing	4	80	4	9 9	4	80	
	Variable valve actuation and lift	9	280	10	230	11	280	
	Low friction design and materials	2	35	2	35	2	35	
8	Optimising genboxratios / downspeeding	4	60	4	60	4	60	
	Automated manual transmission		300	5	300	5	300	
	Dual clutch transmis sion	6	650	6	700	6	750	
Ä	Continuously variable transmission	<u>4</u>	1200	5	1200	5	1200	
, E	Start-stop hybridisation		175	5	200	.5	22.5	
	Miero hybrid - regenerative breaking	7	325	7	375	7	425	
l de la	Mild hybrid - torque boost for downsizing	15	1400	15	1500	15	1500	
Η	Ful hybrid - electric drive	25	2250	25	2750	25	3750	
	Mild weight reduction	2	128	2	160	2	192	
8	Medium weight reduction	6	320	6	400	6	490	
	Strong weight reduction	בנ	800	12	1000	12	1200	
12,52	Lightweight components other than BIW	2	120	2	150	2	180	
불문	A crodynamics improvement	2	50	2	50	1.5	60	
8	Tyres: low rolling resistance	3	30	3	35	3	40	
	Reduced driveline friction	1	50	1	50	1	50	
	Themo-electric waste heat recovery	2	1000	2	1000	2	1000	
29	Secondary heat recovery cycle	2	200	2	200	2	200	
បី	Auxiliary systems efficiency improvement	12	420	12	440	12	460	
	Thermal management	2.5	150	2.5	150	2.5	150	

Relative to 2002 reference vehicles

Reduction technologies for diesel cars in 2020

TRANSPORT & MOBILITY LEUVEN

innovation for life

Your link to integrated analyses !

Techno	logy options for diesel cars	Sn	nall	Med	ium	Large		
Descri	pilan	Reduction potential [%]	Cost [C]	Reduction potential [%]	Cost [€]	Reduction potential [%]	Cost [€]	
ž	Combustion inprovements	2	50	2	50	2	50	
l č	Mild downsizing (15% cylinder content reduction)	4	50	4	50	4	50	
- <u>-</u>	Medium downsizing (30% cylinder content reduction)	7	400	7	450	7	500	
6	Strong downsizing (=15% cylinder content reduction)	15	500	15	600	15	700	
I.	Variable valve actuation and lift	1	280	1	280	L	280	
8	Optimising gearboxratios / downspeeding	3	60	3	60	3	50	
	Automated manual transmission	4	300	4	300	4	300	
	Dual clutch transnis sion	5	650	5)	700	5	750	
цЦ Ц	Continuously variable transmission	4	1200	4	1200	4	1200	
3	Start-stop	4	175	4	200	4	225	
its st	Micro hybrid - regenerative breaking	6	375	6	375	б	375	
hid	Mild hybrid - torque boost for downsizing	Ш	1400	11	1500	11	1500	
Ĩ	full hybrid - electric chive	22	2250	22	2750	22	3750	
	Mild weight reduction	1.5	128	1.5	160	1.5	192	
8	Mediumweight reduction	5	320	5	400	5	480	
aistaa no a	Strong weight reduction	11	800	11	1000	11	1200	
	Lightweight components other than BIW	1.5	120	1.5	150	1.5	180	
	A erodynamics improvement	2	50	2	50	1.5	60	
	Tyres: low rolling resistance	3	30	3	35	3	40	
	Reduced driveline friction	1	50	1	50	1	50	
	Thenno-electric conversion	2	1600	2	1000	2	1000	
1	Secondary heat recovery cycle	2	200	2	200	2	200	
	Autiliary systems improvement	11	420	11	440	11	460	
	Thermal management	2.5	150	2.5	150	2.5	150	

Relative to 2002 reference vehicles

Database

- > 2009 Polk database acquired for EU 5 + 2
 - Germany
 - > France
 - > UK
 - **Italy**
 - > Spain
 - Poland
 - Hungary

2009 database EU5+2

	Ref. mass	Footprint	CO2	
2009 charcteristics	[kg]	[m2]	[g/km]	Sales [#]
BMW	1565	4.1	152	550370
Chrysler	1938	4.4	217	33872
Fiat	1121	3.5	135	1008100
Ford	1311	3.9	141	857890
Geely (incl. Volvo)	1680	4.3	171	81000
General Motors	1293	3.8	146	894118
Honda	1381	3.9	150	141893
Hyundai-Kia	1328	3.8	143	352901
Mazda	1334	3.9	150	128161
Mercedes	1511	4.0	165	522280
Mitsubishi	1373	3.9	163	55546
PSA	1316	3.8	136	1343392
Porsche	1780	4.0	262	25216
Renault-Nissan	1276	3.9	143	1298526
Spyker Cars (incl. Saab)	1669	4.1	174	12649
Subaru	1558	4.0	182	17377
Suzuki	1218	3.6	140	91492
Tata (incl. Jaguar, Land Rover)	2061	4.4	224	67986
Toyota	1235	3.7	136	408494
Volkswagen	1423	4.0	152	2225451
Average	1346	3.9	147	10116714

Additional manufacturer costs of (PH)EVs compared to ICEVs

Additional manufacturer costs		FEV		PH	EV pet	rol	PH	EV die	sel	ER	EV pet	rol	ER	EV die	sel
EV characteristics EV range [km] Motor Power (peak) [kW] Engine power [kW]	150 62 -	175 80 -	200 85 -	50 28 58	50 30 80	50 30 95	50 28 59	50 30 81	50 30 96	50 66 48	50 80 51	50 84 51	50 67 48	50 81 52	50 85 52
Battery capacity [kWh]	16.0	21.0	24.0	5.9	6.4	6.3	6.0	6.5	6.4	5.7	6.1	6.0	5.8	6.2	6.0
Cost electrification Battery [€] Motor [€] Engine & Tranmission [€] Generator [€] Inverter & Boost converter [€] Control unit & Harness [€]	6784 435 0 690 240 810	8747 551 0 878 270	9766 582 0 929 300	2579 208 2000 0 337 240 810	2752 222 2350 0 359 270	2711 220 2450 0 356 300	2604 210 2500 0 341 240 810	2787 224 2800 0 364 270	2753 223 2900 0 361 300	2493 464 1000 432 1423 360 810	2646 552 1100 463 1615 390	2585 580 1100 462 1659 420	2513 470 1400 436 1439 360 810	2667 558 1600 467 1632 390	2607 586 1600 466 1677 420
Avoided ICE costs ICE engine power [kW] Engine & Tranmission [€] Total extra manufacturer costs [€]	55 1650 7309	80 2400 8946	110 3300 9267	55 1650 4524	80 2400 4453	110 3300 3727	55 1650 5055	80 2400 4945	110 3300 4227	55 1650 5332	80 2400 5266	110 3300 4496	55 1650 5778	80 2400 5814	110 3300 5046

Footprint x height

2009 footprint*height vs. CO2

> Better correlation with CO₂ than footprint

> Other pro's and con's are similar

Seats and trunk volume as utility parameter

of seats (expressed in volume) + trunk volume

- + Very true utility parameter
- + This combined parameter might also be used for vans
- Possibilities for gaming depend on accuracy of assumed volume per seat
 - Whether or not increasing # of seats leads to more relaxed target depends on dimensions of car / seats compared to "average" car for which default value is defined

innovation

- Very poor correlation with CO₂
 - Increasing utility has limited impact on CO₂
 - > Limit function based on fit leads to extremely stringent reduction goals for sports cars
- Based on assumption for default volume per seat that can be disputed
- ? Does expressing seats in volume solve the problem of defining what a seat is and possible problems with small seats, foldable or removable seats?

Conclusions on utility parameters

- Conclusion on main candidates
 - > mass, footprint, footprint x height
- > Other discarded options:
 - > pan area: footprint is superior
 - > wheelbase: footprint is superior

Footprint x height not further assessed as: •it rewards higher vehicles such as SUVs •decision was made to keep as much as possible the same for 2020 legislation

innovation

- # seats + trunk volume: poor correlation with CO₂, questionable definition
- > payload: manufacturer declared value, poor correlation with CO₂
- > normalised (payload + (# of seats + trunk volume)): combination of disadvantages

TRANSPORT & MOBILITY

Your link to integrated analyses !

> price: not a measure of functional utility, very uneven distribution of vehicles around <U>, can not be objectively measured or verified, gives credit to performance (kW/ton ratio), promotes gaming

Distributional impacts – mass – 95 g/km in 2020

- Porsche not able to meet its 2020 target
- Problem for Tata with small slope values

٠

Framework Contract on Vehicle Emissions ENV.C.3./FRA/2009/0043 Service request #1

Distributional impacts – footprint – 95 g/km in 2020

innovation for life

- Porsche + Tata not able to meet their 2020 targets
- > Problem for Chrysler with small slope values

•

