

Ricardo-AEA

Evaluation of Regulations 443/2009 and 510/2011 on the reduction of CO₂ emissions from light-duty vehicles

Sujith Kollamthodi (Ricardo-AEA)

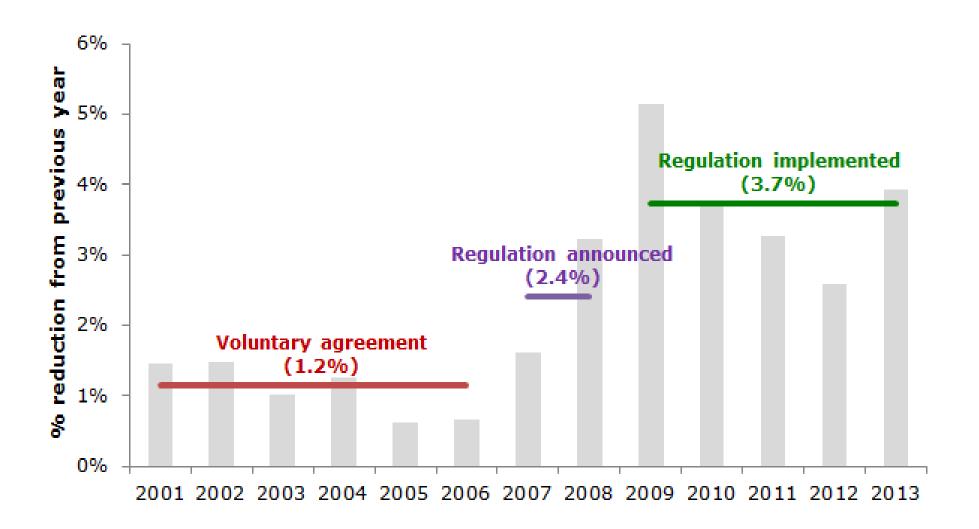
Brussels, 18th June 2015

Study aims and objectives

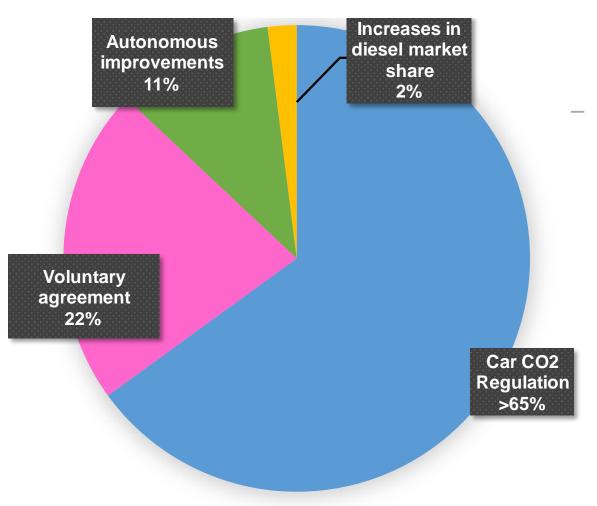
- Evaluate car and LCV CO₂ Regulations to better understand:
 - Inefficiencies due to design or implementation. Importance of each aspect;
 - Areas that could be affecting competitiveness or social equity; and
 - If the legislative framework needs to be adapted in light of technological developments
- Looks backwards at results and evaluates all elements in terms of:
 - Relevance
 - Efficiency
 - Effectiveness
 - Coherence
 - EU added-value

RICARDO-AEA

Relevance – to what extent do the objectives of the Regulations still respond to the needs?


- All sectors still need to contribute to fight against climate change
- CO₂ performance of new vehicles needs to improve at a faster rate
 - Annual rate of improvement needs to be ~5.2% for cars and ~3.2% for LCVs
- Road transport needs to use less oil to improve security of energy supply
- CO₂ reductions must be delivered cost effectively without undermining competitiveness of the automotive industry or sustainable mobility
 - Importance of the automotive industry to the EU economy is widely recognised
 - Importance of sustainable mobility highlighted in Transport White Paper

Effectiveness of the Regulations


- Achieved reductions in NEDC tailpipe CO₂ emissions
 - Average 2013 emissions: 126.6 gCO₂/km for cars and 173.3 gCO₂/km for LCVs.
 Regulatory targets met early.
 - 72 car manufacturers (of 84) met their 2013 target. All but two joined pools.
 - All larger car manufacturers on track to meet their 2015 targets (15 already have of which 6 have emissions below 120 gCO₂/km)
 - 12 (of 13) LCV manufacturers met their indicative 2013 targets.
 - 5 LCV manufacturers (48% of sales) have emissions below 175 gCO₂/km
 - Increased percentage of LCVs with emissions below 140 g/km (27% in 2012, 32% in 2013)

Regulation's contribution to emission reductions – cars

- Regulation's contribution to emission reductions cars
 - High-level data suggests Regulation effective in reducing car CO₂ emissions

- Other factors that could have played a role include:
 - National policies/incentives
 - Fuel prices/taxes
 - Shifts in vehicle segments
 - Changes in vehicle mass

Effectiveness of the Regulations

- Weaknesses
 - Test cycle emissions diverging from real-world emissions
 - Well-to-tank emissions Regulations incentivise vehicles with low TTW emissions that may have higher Well-To-Tank (WTT) emissions. WTT emissions are not covered by the Regulations
 - Embedded emissions Regulations may lead to vehicles with higher embedded emissions as these are not covered by them
 - Mass as utility parameter potentially disincentivises mass reduction as an abatement option
 - Small volume and niche derogations very limited impacts in worst-case, target weakened by a fraction of 1%
 - Other potential weaknesses (super-credits and phase-in of targets) have not weakened the targets in practice

Effectiveness of the Regulations

Competitiveness and innovation

- Impacts appear positive. Some evidence standards induce R&D spending.
- Patent application trends indicate EU automotive industry has increasingly focused on R&D for hybrid and electric vehicles

Social equity

- Likely positive impacts no impacts on new vehicle retail prices identified
- Consumers in all income groups benefit from improved fuel efficiency once vehicles pass to second-hand market

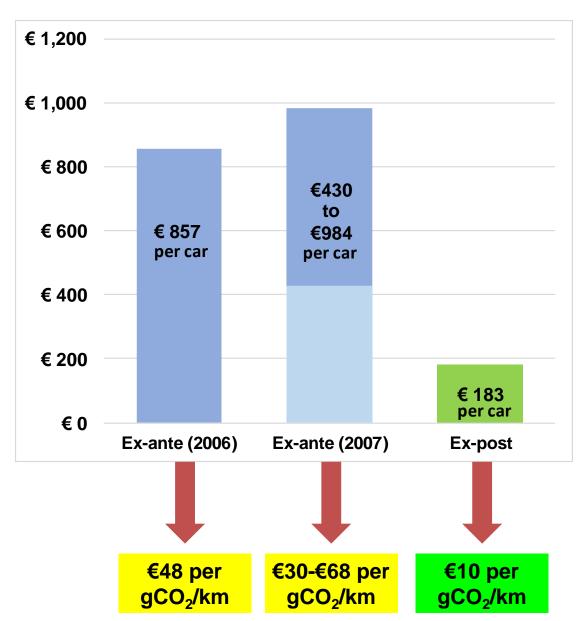
Environmental protection

- Exclusion of WTT and embedded emissions has so far not been a problem may change if alternative powertrains become more prevalent
- Most technologies and fuels with greatest life-cycle GHG benefit also have greatest potential to reduce NOx and PM

NPV Costs (2014 prices) and CO ₂ savings	Ex-ante impact assessment	Ex-post evaluation
Costs to Society (2006-2020)	€25 billion	
Costs to society (2007-2013)		-€6.4 billion
CO ₂ savings – all new cars 2006 to 2020	-636 MtCO ₂	-
CO ₂ savings - new cars registered between 2007 to 2013	-	-138 MtCO ₂
Cost effectiveness (€/tCO₂)	+€39/tCO ₂	-€46/tCO ₂

- Figures show net economic benefits to society
- Cost effectiveness better than expected because:
 - Fuel prices higher than anticipated between 2006 and 2013
 - Technology costs lower than anticipated

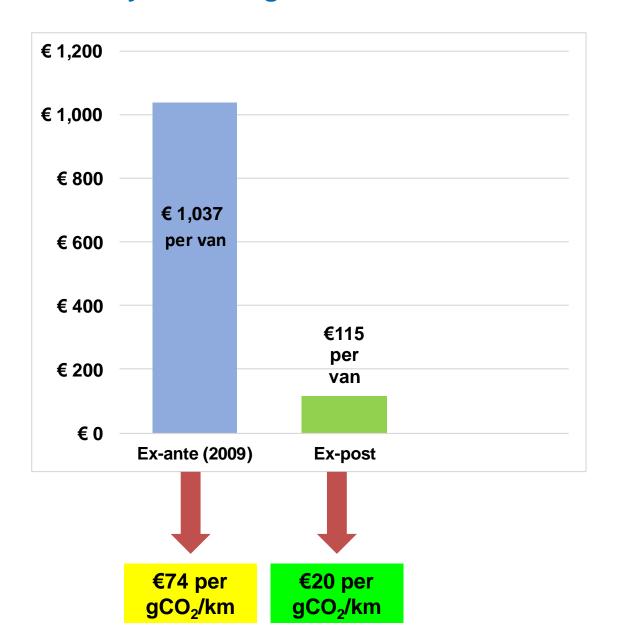
Note: cumulative emissions and economic benefits will increase in future years



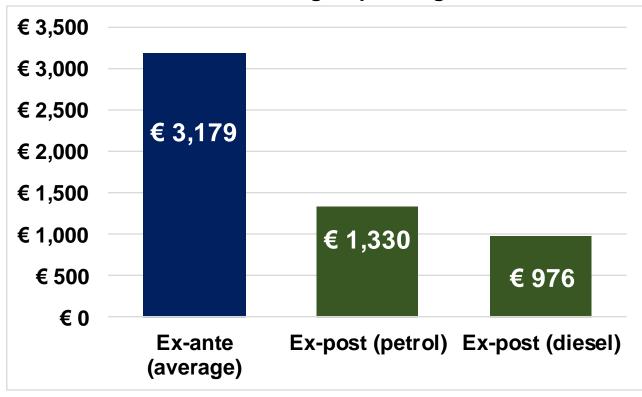
NPV Costs (2014 prices) and CO ₂ savings	Ex-ante impact assessment	Ex-post evaluation
Costs to society (2010-2020)	-€5.3 billion	-
Costs to society (2010-2013)	-	-€0.9 billion
CO ₂ savings – all new LCVs 2010 to 2020	-60 MtCO ₂	-
Lifetime CO ₂ savings - new LCVs registered between 2010 and 2013	-	-5.2 MtCO ₂
Cost effectiveness (€/tCO₂)	-€39 to -€33/tCO ₂	-€166/tCO ₂

- LCV CO₂ Regulation highly cost effective already with significant benefits
- Ex-ante impact assessment assumed starting point of 203 gCO₂/km in 2010 more recent data indicates average emissions were around 185 gCO₂/km in 2010

Efficiency of the Regulations – Manufacturer Costs: Cars


RICARDO-AEA

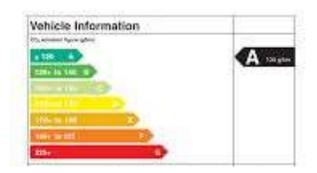
- Costs incurred by manufacturers much lower than anticipated
- Total costs to (2007-2013)
 predicted to fall in range of €36
 billion to €81 billion
- Ex-post evaluation indicates total actual costs were €17
 billion
- Costs of CO₂ abatement technologies much lower than predicted


Efficiency of the Regulations – Manufacturer Costs: LCVs

RICARDO-AEA

- Costs incurred by manufacturers much lower than anticipated
- Original Impact Assessment significantly overestimated baseline LCV emissions performance
- Total costs to manufacturers predicted to be €7.5 billion
- Ex-post evaluation indicates total actual costs were €0.8 billion

Lifetime fuel cost savings – passenger cars


- Fuel cost savings for cars and LCVs significantly lower than anticipated
- Due to increasing divergence between NEDC and real-world performance
- For LCVs, issue compounded by inaccuracies in 2010 baseline CO₂ performance

Coherence: how the Regulations fit with other policy objectives

RICARDO-AEA

Alignment of Regulations with other EU action

- Regulations coherent with demand-side EU measures (Car CO₂ Labelling Directive and the Clean Vehicle Directive)
- Member States use CO₂ based vehicle tax policies to influence purchase behaviour
- EU Directives on fuels, energy carriers and energy infrastructure work with the Regulations to reduce GHG emissions
- Euro emission standards and CO₂ Regulation targets may lead to trade-offs between air pollutant emissions and CO₂ emissions performance
- No explicit conflicts between safety requirements and the CO₂ Regulations

EU added value

- Automotive industry requires high regulatory certainty given the large investments required to comply with targets.
- Only EU-level action can achieve the level of certainty required.
- High risk of uncoordinated action at Member State level. Wouldn't achieve same levels of effectiveness and efficiency as has been achieved.
- Widely varying break points employed by Member States to differentiate taxes, fiscal incentives and fuel economy labels
- Policies subject to national sovereignty so unlikely they would create a level playing field.

Conclusions

Regulations:

- still highly relevant in the context of need to reduce GHG emissions from road transport in line with economy-wide targets
- effective in ensuring emissions reductions and in increasing the rate of reductions.
- significantly more effective than the previous car CO₂ voluntary agreement
- use of NEDC test cycle emissions to measure performance is a key weakness
- significantly more cost-effective than originally anticipated
- broadly coherent with other EU policy measures. In many cases, they work together with these other measures to reduce CO₂ emissions from road transport
- clear added value from EU-level action. Unlikely to be achieved from Member State level action

QUESTIONS?

Sujith Kollamthodi Practice Director – Sustainable Transport

Ricardo-AEA Ltd Gemini Building, Fermi Avenue, Harwell, Didcot, Oxfordshire, OX11 0QR United Kingdom

T: +44 (0)1235 753526

E: sujith.kollamthodi@ricardo-aea.com

W: www.ricardo-aea.com