

Ricardo-AEA

Improving understanding of technology and costs for CO₂ reductions from cars and vans in the period to 2030

DG Climate Action LDV Framework

Nikolas Hill (Ricardo-AEA)

Brussels, 9th December 2014

Agenda – LDV CO2 reducing technologies to 2030

1)	Project outline: overview of the project and methodology	[5 min]
2)	Summary of key technical tasks and progress	[35 min]
	a. Technology baseline and segmentation	[10 min]
	b. Technology coverage and status of data collection/analysis	[5 min]
	c. xEV powertrain technology analysis and deployment scenarios	[5 min]
	d. Use of vehicle simulation for CO ₂ savings, calibration of outputs	[5 min]
	e. Stakeholder consultation activities	[10 min]
3)	Questions	[20 min]

Project outline

RICARDO-AEA

- Defining the baseline and segmentation RICARDO-AEA
 - **Objective:** Establish new baseline against which the deployment of technologies and their costs will be compared, and also appropriate vehicle segmentation for the analysis.
 - Segmentation needs to be:
 - Appropriate to sufficiently capture differences between costs and CO₂ reduction potential for different types of car and light commercial vehicles
 - Readily understood, and able to be characterised using publically available datasets as far as possible
 - Manageable and proportionate [note Task 11]
 - Baseline needs to account for/reflect:
 - The most recent changes to market, characteristics and performance
 - The current impact of technology deployment
 - The level of optimisation of test vehicles by OEMs
 - → Build on analysis and segmentation work for downweighting project
 - Updated analysis using most recent EEA 2013 car and van monitoring DB

Passenger Cars

Costs for different segments from FEV / ICCT (2013) analysis:

- Suggests significantly higher cost for heavier/more powerful segments
- Value in separating them out from previous combination with D-segment

Vans / Light Commercial Vehicles

- No obvious reason to increase the number of categories
- Current N1 'Class' based on reference weight (unladen)
 - Prone to shifts between categories for same basic vehicles
 - Likely exacerbated in the future through application of technology
- Explored possible variants / alternatives
 - Trends vs Maximum Laden Mass, body type, payload capacity were explored
 - Segmentation using Maximum Laden Mass seemed a better alternative

RICARDO-AEA

Final segmentation and baseline parameters

- Revised segmentation agreed with the EC:
 - Used to define 2013 baseline vehicle performance characteristics, i.e.: CO₂ / fuel consumption per km, power, weight

Cars, gCO ₂ /km	Petrol	Diesel	Electric	Other	Av.
Small [A+B]	118.4	104.4	0.0	113.6	114.5
Lower Medium [C]	136.4	124.0	0.0	143.3	128.5
Upper Medium [D]	151.3	134.1	0.0	140.4	137.0
Large [Others]	181.7	162.3	0.0	162.4	165.9
Average	127.4	126.8	0.0	120.8	126.8

Vans, gCO ₂ /km	Petrol	Diesel	Electric	Other	Av.
Small [<1.8t GVW]	135.5	105.4	0.0	137.1	109.4
Medium [1.8-<2.5t GVW]	154.8	135.4	0.0	158.6	134.0
Large [2.5-3.5t GVW]	188.4	204.7	0.0	214.2	204.6
Average	147.2	175.4	0.0	159.5	173.8

- Expanded approach needed for baseline xEVs
 - Efficiency, technology, mass and cost from model review, and component breakdown (later slide)

RICARDO-AEA

Passenger Cars:

Vans / Light Commercial Vehicles:

RICARDO-AEA

Current penetration and estimated CO2 benefit of technologies

- Updated technology penetration estimates to 2013 (IHS Automotive)
 → new analysis also split by vehicle segment
- Ricardo-AEA estimated CO₂ savings due to the technology application vs 2002
 → significant differences between segments
- To be used with baseline CO₂ emissions to calibrate cost-curves to 2013 situation (+ adjusted to WLTP)

Technology coverage, data collection and analysis **Process**

Identification of technologies:

- Review of previous studies
- Search through public domain literature (journals, conference proceedings, news stories, OEM and supplier websites, etc.)
- Initial discussions with experts to validate/check selections
- Characterisation of identified technologies: √ (in draft)
 - CO₂ / fuel savings
 - Costs (timing, breakdown where available, basis i.e. incl./excl. items)
 - Compatibility (with other technologies, powertrains, segments)

Stakeholder consultation:

- Gap-filling (focus on filling gaps in data with key experts/organisations) √
- $-\,$ Delphi survey on aspects of cost methodology ullet

(in progress)

- Validation and broader discussions (i.e. full draft dataset, other questions)
- Ad-hoc

Technology coverage, data collection and analysis Coverage and outputs

Technologies:

- On-cycle options: covering conventional (+HEV), PHEV/REEV, BEV and FCEV in separate cost-curves
 - FCEV and BEV in term of cost per MJ/km, rather than gCO₂/km
- Off-cycle options: technologies with real-world savings not captured in test-cycles (e.g. eco-innovations or other)

Outputs similar to previously. Cost curves calibrated using:

- Outputs/analysis based on Delphi Survey findings
- Simulation for Task 4.4 (individual measures) and Task 11 (verify versus packages of measures)
 - NEDC
 - WLTP
 - 'Real-world' emission cycles

- Alternative approach to estimating 'baseline' cost for xEVs (before other tech's added)
- Accounting for battery size / range considerations in the cost-curve

Technology coverage, data collection and analysis

Approach for xEVs

- Detailed breakdown of costs for xEVs provided in TNO (2011) for Commission
 - Expanded and adapted analysis to additional segments and updating key datasets and assumptions (from review)
- Use parameters (all powertrains) derived from 2013 database for baseline (CO₂ / fuel consumption per km, power, weight)
- Focus validation with stakeholders on key assumptions that have the maximum impact on costs (and efficiency):
 - Battery Costs and Weight (energy density)
 - Fuel Cell System Costs and Weight
 - Average BEV Range
 - Powertrain Factors (i.e. battery % available SOC, sizing/scaling of ICE, motor and FC)
 - Motor System Weight

RICARDO-AEA

DRAFT

Technology coverage, data collection and analysis

Approach for xEVs

DRAFT

Lower Medium Car -

55%

■ Motor System

H2 Storage

6%

Total

System,

€17922

Other Electric Systems Fuel Cell System

Battery System

8%

27%

FC REEV

- Similar breakdown for system mass using TNO (2011) → efficiency/battery size
- Estimate baseline vehicle costs for different fuels/powertrains in future periods (2020, 2025, 2030)
 - → use as starting point in cost-curve with additional technologies
- Calculation of future costs to be aligned with overall cost -projection methodology (see later slides)

Motor System

■ H2 Storage

Battery System

Other Electric Systems Fuel Cell System

RICARDO-AEA

12 Ricardo-AEA in Confidence ED59621 9 December 2014 © Ricardo-AEA Ltd

Motor System

H2 Storage

■ Battery System

Other Electric Systems Fuel Cell System

Powertrain deployment scenarios

Exploration of the uncertainty in the rate xEV technology reduction

- Objective is to explore sensitivity in xEV component cost reduction via extreme scenarios
- Range of draft scenarios developed for this purpose:
 % share of sales in Europe
- Current working assumption is that cost reductions for most ICEV technologies will be largely unaffected due to ongoing global significance

Further analysis of CO₂ benefits associated with individual technology, and selected packages

- Objectives (Task 9 for individual technologies)
 - Understand the incremental CO₂ benefits of individual technologies to the European context and in terms of the new WLTP basis

Methodology overview

- CO₂ benefits for technologies that reduce test cycle emissions
 - WLTP basis
 - Impacts of technology combinations (inputs)
- Simulation of CO₂ abatement performance via PHEM modelling
 - NEDC, WLTP, CADC in "real world conditions"

E.g. similar to downweighting project:

Outputs

Results provided as inputs to other tasks, and ultimately Task 9 cost curves

Further analysis of CO₂ benefits associated with individual technology, and selected packages

- Objectives (Task 10 for verification of cost curves for technology packages)
 - Quality checks of data on CO₂ reduction and on corresponding costs fed into Task 9
 - Independent validation work especially on the CO₂ reduction values
 - Recommendations based on the findings

Methodology overview

- Verification of cost curve data using:
 - information from currently deployed vehicle types
 - complex vehicle modelling
 - component testing and simulation
- Recommendations based on the findings from the verification procedures

Outputs

Refinement of data inputs to Task 9 prior to running the cost-curve model for all variants

Stakeholder Consultation

Summary

- Stakeholder consultation on various aspects and stages of the project:
 - Ad-hoc communications:
 - E.g. sense-checking early technology list; meeting with ACEA CO₂ working group
 - Gap-filling: **∀**
 - Identification of key organisations with expertise for technologies with information gaps or greater uncertainty in existing data
 - Information collected via written responses and telephone interviews with a number of OEMs and suppliers
 - Delphi survey: on key aspects of the cost methodology (see next slides)

- Validation: (in progress)
 - Draft technology dataset sent for feedback/comment to OEMs, suppliers, etc.
 - Interviews being scheduled to discuss also other aspects of the project analysis
- Considerations for non-representative segments:
 - Feedback from interviews with stakeholders during validation process
 - Workshop with a number of smaller manufacturers planned for January 2015
- Presentation of final project results to EC, key stakeholders at a workshop

Stakeholder Consultation

Cost projection methodology and Delphi Survey

From Direct (technology) costs in Y2013

- Obtain direct costs from literature (e.g. teardown studies) or stakeholder consultation
- (2) Apply 'Scaling Factors' that adjust costs to the vehicle segment being analysed (if required)
- (3) Apply 'Indirect Cost Multipliers' (ICMs) that establish indirect technology costs
- (4) Apply 'Learning Factors' that account for decreasing costs over time (→ the projection of costs into the future)
- (5) Sum direct and indirect costs

To Net costs in Y2013 + n (up until 2030)

The above factors and the related methodology were subject of the *Delphi* survey

Stakeholder Consultation

The Delphi Survey Process

A Delphi survey

- Allows a group of experts to collaborate anonymously
- Aims to analyse complex issues with high level of uncertainty
- Aims to achieve a consensus among experts

The survey process

- Seek first expert input to complex issues (1st stage)
- Provide experts with collated (anonymous!) feedback of the responses
- Seek new/updated expert input to the same and/or refined questions (2nd stage)

The Delphi Survey Process

Stakeholder Consultation

The Delphi Survey Process

A Delphi survey

- Allows a group of experts to collaborate anonymously
- Aims to analyse complex issues with high level of uncertainty
- Aims to achieve a consensus among experts

The survey process

- Seek first expert input to complex issues (1st stage)
- Provide experts with collated (anonymous!) feedback of the responses
- Seek new/updated expert input to the same and/or refined questions (2nd stage)

The Delphi Survey Process

All 2nd (= final) stage responses have been received by the end of November.

* 7 refining questions were also introduced in the second round of the survey.

Stakeholder Consultation

RICARDO-AEA

Overview and main results of the Delphi Survey

- Participation: 15 experts from industry (OEMs, consultancies), academia, policy makers, NGOs
- Results included a broad agreement with the proposed cost estimation methodology:
 - General agreement with the information sources for the scaling approach (EU-tailored and industry–derived data)
 - Overall agreement with the ICM approach for indirect manufacturing costs; EU-tailored ICMs preferred over EPA ICMs
 - Preference of the EPA/FEV learning approach over the previous EC approach to predict technology costs developments
- Consensus that it would be preferable to also analyse the costs of whole technology packages instead of single technologies only [see earlier slides on verification of cost curves]

Stakeholder Consultation *Overview and main results of the Delphi Survey*

- More diverging opinions concerning more detailed aspects of the methodology, e.g. concerning:
 - xEV penetration rates (i.e. impacts on costs for different component types)
 - Which factors to be included in indirect costs: The opinions diverged for pension costs, health care costs, transportation costs, dealer net profit allowance, dealer selling costs and manufacturer's profit allowance
 - Specific aspects of the cost curve methodology (e.g. which learning rate to use)
 - How to account for manufacturers' strategies to reduce costs (e.g. shared platforms)
 - Handing overlaps/synergies between technologies, and
 - Handling the impacts of integrated packages vs stand-alone technology costs
- Only very few experts reconsidered their opinion after having received feedback from the 1st stage questionnaire answers of other experts
- → There is still the need to make a judgement on the optimal approach, keeping in mind that experts advocate a 'useable/practical' model/methodology that avoids unfounded complexity, that can be broadly applied

Stakeholder Consultation

Validation of baseline CO₂ and cost data

Draft full dataset for conventional and xEV technologies sent for feedback

RICARDO-AEA

Next steps

- Consultation:
 - Data validation and interviews (Nov '14 early Jan '15)
- Simulation of CO₂ savings NEDC vs WLTP vs real-world
- Finalisation of powertrain deployment scenarios and technology cost uncertainty analysis (for conventional and xEV technologies)
- → final cost and CO₂ performance datasets
- Cost-curve development and verification
- Considerations for non-representative segments:
 - Feedback from interviews with stakeholders during validation process
 - Workshop with a number of smaller manufacturers planned for January 2015
- Final report and workshop

Discussion and Questions

• ?

Nikolas Hill Knowledge Leader – Transport Technology and Fuels

Ricardo-AEA Ltd Gemini Building, Fermi Avenue, Harwell, Didcot, Oxfordshire, OX11 0QR

T: +44 (0)1235 753522

E: nikolas.hill@ricardo-aea.com

W: www.ricardo-aea.com